@philschmid: very stange. I think I found how to pass parameters
but when I pass the same parameters than the ones I used in a Colab notebook, I got 2 different predictions…
Code from my Colab notebook
model_name = "xxx"
API_TOKEN = 'xxxx' # API token
max_target_length = 32
num_beams = 1
text2text = pipeline(
"text2text-generation",
model=model_name,
use_auth_token=API_TOKEN,
num_beams=num_beams,
max_length=max_target_length
)
# put a prefix before the text
input_text = "xxxxx" # one sentence
# get prediction
pred = text2text(input_text)[0]['generated_text']
# print result
print('input_text |',input_text)
print('prediction |',pred)
Code I use in the AWS SageMaker Deploy notebook
input_text = "xxxx"
data= {
"inputs":input_text,
"parameters": {
"max_length":32,
"num_beams":1,
}
}
# request
predictor.predict(data)