The 500 error likely stems from a problem in either the preprocessing, model setup, or interaction with your environment. Here’s a checklist and suggestions to debug and resolve the issue:
1. Dataset Format
- Check tokenization:
- Ensure that the tokens and tags in the CSV files are properly formatted as lists.
- Double-check that the quotes (
") aroundtokensandtagsare not interfering with reading the file as lists in Python.
- Recommended Fix: Instead of storing lists as strings in CSV, store them as lists in JSONL (JSON Lines) format. Example:
json
Copy code
{"tokens": ["ist", "lebt", "Herr", "Berlin", "030", "Siemens", ".", "E-Mail-Adresse", "Telefonnummer"], "tags": ["O", "O", "O", "LOCATION", "PHONE_NUMBER", "ORGANIZATION", "O", "O", "O", "PHONE_NUMBER"]}
Use JSONL for better compatibility with frameworks like Hugging Face.
2. Loading the Dataset
If you’re using Hugging Face’s datasets library, ensure the dataset is correctly loaded. For a CSV:
python
Copy code
from datasets import load_dataset
data_files = {"train": "train.csv", "validation": "validate.csv"}
dataset = load_dataset("csv", data_files=data_files)
If your tokens and tags are strings, you may need to parse them:
python
Copy code
def preprocess_data(example):
example["tokens"] = eval(example["tokens"]) # Convert string to list
example["tags"] = eval(example["tags"])
return example
dataset = dataset.map(preprocess_data)