Hi ,
I am deploying customized SpaCy NER transformer model to SageMaker. I got the inference errors…
odelError: An error occurred (ModelError) when calling the InvokeEndpoint operation: Received client error (400) from primary with message "{
"code": 400,
"type": "InternalServerException",
"message": "Can\u0027t load config for \u0027/.sagemaker/mms/models/jinhybr__en_SEDNA_NER_MARTIME\u0027. Make sure that:\n\n- \u0027/.sagemaker/mms/models/jinhybr__en_SEDNA_NER_MARTIME\u0027 is a correct model identifier listed on \u0027https://huggingface.co/models\u0027\n (make sure \u0027/.sagemaker/mms/models/jinhybr__en_SEDNA_NER_MARTIME\u0027 is not a path to a local directory with something else, in that case)\n\n- or \u0027/.sagemaker/mms/models/jinhybr__en_SEDNA_NER_MARTIME\u0027 is the correct path to a directory containing a config.json file\n\n"
}
Here is my deploy code:
from sagemaker.huggingface import HuggingFaceModel
import sagemaker
role = sagemaker.get_execution_role()
# Hub Model configuration. https://huggingface.co/models
hub = {
'HF_MODEL_ID':'jinhybr/en_SEDNA_NER_MARTIME', # model_id from hf.co/models
'HF_TASK':'token-classification' # NLP task you want to use for predictions
}
# create Hugging Face Model Class
huggingface_model = HuggingFaceModel(
env=hub,
role=role, # iam role with permissions to create an Endpoint
transformers_version="4.12.3", # transformers version used
pytorch_version="1.9.1", # pytorch version used
py_version="py38", # python version of the DLC
)
predictor = huggingface_model.deploy(
initial_instance_count=1,
instance_type="ml.m5.xlarge"
)
data = {
"inputs": "Camera - You are awarded a SiPix Digital Camera! call 09061221066 fromm landline. Delivery within 28 days."
}
# request
predictor.predict(data)
I also try to deploy as zip from S3, same errors…here is s3 code.
huggingface_model = HuggingFaceModel(
model_data="s3://hugg-ner-model/model.tar.gz", # path to your trained SageMaker model
role=role, # IAM role with permissions to create an endpoint
transformers_version="4.12.3", # Transformers version used
pytorch_version="1.9.1", # PyTorch version used
py_version='py38', # Python version used
env={ 'HF_TASK':'token-classification' },
)
## I use tar zcvf model.tar.gz * from local repo and cp to s3
Really appreciated for your helps!