def forward(self,input_ids,attention_mask):
output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask)
print(output_1.last_hidden_state.shape)
hidden_state=output_1[0]
# assert output_1.last_hidden_state.shape == output_1[0].shape
pooler=hidden_state[:,0]
assert output_1.last_hidden_state.shape == pooler.shape
logits=self.classifier(pooler)
return logits
Why the need for slicing hidden_state[:,0]
. What does this signify? I’m unable to understand this step.