Get embedding from finetuned BertForSequenceClassification model

Hello! :wave:

For BertForSequenceClassification you can do almost exactly what you did with BertModel:

>>> model = BertForSequenceClassification.from_pretrained("bert-base-uncased")
>>> model.bert.embeddings.word_embeddings.weight
Parameter containing:
tensor([[-0.0102, -0.0615, -0.0265,  ..., -0.0199, -0.0372, -0.0098],
        [-0.0117, -0.0600, -0.0323,  ..., -0.0168, -0.0401, -0.0107],
        [-0.0198, -0.0627, -0.0326,  ..., -0.0165, -0.0420, -0.0032],
        ...,
        [-0.0218, -0.0556, -0.0135,  ..., -0.0043, -0.0151, -0.0249],
        [-0.0462, -0.0565, -0.0019,  ...,  0.0157, -0.0139, -0.0095],
        [ 0.0015, -0.0821, -0.0160,  ..., -0.0081, -0.0475,  0.0753]],
       requires_grad=True)
1 Like