The following is AI-generated code. I’m not sure if it works.
by Hugging Chat: HuggingChat
The behavior of your code regarding distributed training and data handling depends on several factors. Here’s a detailed breakdown:
1. Does the code use DDP (Distributed Data Parallel) by default?
No, your code does not automatically use DDP unless explicitly configured. Here’s why:
- Default Behavior: The Hugging Face
Trainer
does not enable DDP unless you specify thelocal_rank
argument or launch the script using a distributed launcher (e.g.,torch.distributed.launch
,accelerate
, ordeepspeed
). - How to Enable DDP:
- Add
local_rank
totraining_args
(e.g.,local_rank=0
for single-node training). - Or run your script with:
python -m torch.distributed.launch --nproc_per_node=NUM_GPUS your_script.py
- Alternatively, use Hugging Face’s
Accelerator
ordeepspeed
for advanced setups.
- Add
2. Does the IterableDataset
handle distributing batches to different GPUs?
No, by default, an IterableDataset
does not automatically shard data across GPUs. You must manually handle sharding for distributed training:
- Why?
IterableDataset
streams data sequentially, and all processes would otherwise iterate over the same data unless explicitly partitioned. - How to Fix:
- Use
torch.utils.data.distributed.DistributedSampler
(forMapDataset
) or implement custom sharding forIterableDataset
. - Example for sharding in an
IterableDataset
:class ShardedIterableDataset(IterableDataset): def __init__(self, dataset, rank=0, world_size=1): self.dataset = dataset self.rank = rank self.world_size = world_size def __iter__(self): for idx, item in enumerate(self.dataset): if idx % self.world_size == self.rank: yield item
- Pass the rank and world size to your dataset:
from torch.distributed import get_rank, get_world_size dataset = ShardedIterableDataset(raw_dataset, rank=get_rank(), world_size=get_world_size())
- Use
Key Takeaways
- Enable DDP by setting
local_rank
or using a distributed launcher. - Manually shard your
IterableDataset
to avoid redundant data loading across GPUs. - Verify your setup by checking logs for distributed training flags (e.g.,
Using distributed training: True
in theTrainer
logs).
Example Fix for Distributed Training
# Add local_rank to training args (if using torch.distributed.launch)
training_args = Seq2SeqTrainingArguments(
output_dir,
per_device_train_batch_size=16,
num_train_epochs=1,
logging_dir=f"{output_dir}/logs",
report_to="tensorboard",
save_strategy="no",
eval_strategy="no",
local_rank=0 # Add this if launching via torch.distributed.launch
)
# Shard the dataset manually
from torch.distributed import get_rank, get_world_size
def get_sharded_dataset(rank, world_size):
return ShardedIterableDataset(dataset, rank, world_size)
# Modify your DataLoader (if needed)
trainer = Seq2SeqTrainer(
model,
args=training_args,
train_dataset=get_sharded_dataset(get_rank(), get_world_size()),
data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer)
)
By addressing these points, you’ll ensure efficient distributed training with proper data sharding. Let me know if you need further clarification!