**Admins, feel free to move to “AutoTrain” subforum
I have made very little progress. I have been able to load a community Whisper model “jonatasgrosman/whisper-large-zh-cv11”. Looking at jonatasgrosman’s files, I see that they are different from the files generated from my training.
jonatasgrosman/whisper-large-zh-cv11
- README.md
- added_tokens.json
- all_results.json
- config.json
- eval_results.json
- evaluation_cv11_test.json
- evaluation_fleurs_test.json
- evaluation_whisper-large-v2_cv11_test.json
- evaluation_whisper-large-v2_fleurs_test.json
- merges.txt
- normalizer.json
- preprocessor_config.json
- pytorch_model.bin
- runs
- special_tokens_map.json
- tokenizer_config.json
- train_results.json
- trainer_state.json
- training_args.bin
- vocab.json
Pardner/whisper-small-fa
- README.md
- config.json
- generation_config.json
- model.safetensors
- preprocessor_config.json
- runs
- training_args.bin
I see that I am missing a “normalizer.json”, “pytorch_model.bin”, and “tokenizer_config.json” but I have a "model.safetensor. I believe I may have missed something in the trainer. I have a I used HF Seq2SeqTrainer to train my model and I used the Seq2SeqTrainer to push to the HF hub:
training_args = Seq2SeqTrainingArguments(
output_dir="./training/whisper-small-fa", # change to a repo name of your choice
per_device_train_batch_size=16,
gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size
learning_rate=1e-5,
warmup_steps=500,
max_steps=5000,
gradient_checkpointing=True,
fp16=False,
evaluation_strategy="steps",
per_device_eval_batch_size=8,
predict_with_generate=True,
generation_max_length=225,
save_steps=1000,
eval_steps=1000,
logging_steps=25,
report_to=["tensorboard"],
load_best_model_at_end=True,
metric_for_best_model="wer",
greater_is_better=False,
push_to_hub=True,
)
trainer = Seq2SeqTrainer(
args=training_args,
model=model,
train_dataset=common_voice["train"],
eval_dataset=common_voice["test"],
data_collator=data_collator,
compute_metrics=compute_metrics,
tokenizer=processor.feature_extractor,
)
trainer.train()
kwargs = {
"dataset_tags": "mozilla-foundation/common_voice_16_0",
"dataset": "Common Voice 16.0",
"dataset_args": "config: fa, split: test",
"language": "fa",
"model_name": Whisper Small Fa - Brett OConnor",
"finetuned_from": "openai/whisper-small",
"tasks": "automatic-speech-recognition",
"tags": "hf-asr-leaderboard",
}
trainer.push_to_hub(**kwargs)
~Pardner