1 line code for NER data set preparation using tokenizer library!

you can see this code is hard to read and understand. Is there any easy way in which we can simplify 15 line of code to 1 line???

def tokenize_and_align_labels(examples):
    tokenized_inputs = tokenizer(examples["tokens"], truncation=True, is_split_into_words=True)

    labels = []
    for i, label in enumerate(examples[f"{task}_tags"]):
        word_ids = tokenized_inputs.word_ids(batch_index=i)
        previous_word_idx = None
        label_ids = []
        for word_idx in word_ids:
            # Special tokens have a word id that is None. We set the label to -100 so they are automatically
            # ignored in the loss function.
            if word_idx is None:
            # We set the label for the first token of each word.
            elif word_idx != previous_word_idx:
            # For the other tokens in a word, we set the label to either the current label or -100, depending on
            # the label_all_tokens flag.
                label_ids.append(label[word_idx] if label_all_tokens else -100)
            previous_word_idx = word_idx


    tokenized_inputs["labels"] = labels
    return tokenized_inputs