402 Client Error: Payment Required for url: https://router.huggingface.co/hf-inference/models/meta-llama/Llama-3.3-70B-Instruct/v1/chat/completions (Request ID: Root=1-67e420cf-1ec0ac2a3a3102965c52fe0f;8fe0d876-5406-4953-9fd4-e7b03cd17bb5)

I am a PRO user, and I want to run the following code, but it persistently throws the Payment required error. Could you please help me to fix the issue?

# Multi-Agent Document Processing System
# Using SmolAgent and SmolDocling for document extraction, analysis, visualization, and web searches


# Import necessary modules
from smolagents import CodeAgent, HfApiModel, tool, DuckDuckGoSearchTool
import json
import matplotlib.pyplot as plt
from wordcloud import WordCloud
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import string
import PyPDF2
import io
import re
import os
import pandas as pd
import seaborn as sns
from collections import Counter
from typing import Dict, List, Any, Union, Tuple

# Download NLTK resources
nltk.download('punkt', quiet=True)
nltk.download('stopwords', quiet=True)

# Set up Hugging Face token for model access
from huggingface_hub import login
# Uncomment the line below to log in directly with your token
# login("your_huggingface_token")
# Or use the interactive login
login()  # This will prompt you to enter your Hugging Face token

# ============================================================
# Document Extraction Tools (SmolDocling replacement)
# ============================================================

@tool
def extract_features_from_pdf(document_path: str) -> str:
    """
    Extracts text and metadata features from a PDF document.
    Returns a JSON string with extracted features.
    
    Args:
        document_path (str): Path to the PDF document
        
    Returns:
        str: JSON string with extracted text and metadata
    """
    try:
        # Open the PDF file
        with open(document_path, 'rb') as file:
            # Create a PDF reader object
            pdf_reader = PyPDF2.PdfReader(file)
            
            # Extract basic metadata
            metadata = {
                "title": os.path.basename(document_path),
                "pages": len(pdf_reader.pages),
                "is_encrypted": pdf_reader.is_encrypted
            }
            
            # Extract text from all pages
            text = ""
            for page_num in range(len(pdf_reader.pages)):
                page = pdf_reader.pages[page_num]
                text += page.extract_text() + "\n\n"
            
            # Extract additional metadata if available
            if pdf_reader.metadata:
                for key in pdf_reader.metadata:
                    clean_key = key.strip('/').lower()
                    if pdf_reader.metadata[key] and str(pdf_reader.metadata[key]).strip():
                        metadata[clean_key] = str(pdf_reader.metadata[key])
            
            # Calculate basic text statistics
            words = word_tokenize(text)
            word_count = len(words)
            unique_words = len(set(words))
            
            # Compile features
            features = {
                "text": text,
                "metadata": metadata,
                "statistics": {
                    "word_count": word_count,
                    "unique_words": unique_words,
                    "text_length": len(text)
                }
            }
            
            return json.dumps(features)
    except Exception as e:
        return json.dumps({"error": str(e), "text": "", "metadata": {}})

@tool
def extract_features_from_text(document_path: str) -> str:
    """
    Extracts features from a plain text document.
    Returns a JSON string with extracted features.
    
    Args:
        document_path (str): Path to the text document
        
    Returns:
        str: JSON string with extracted text and basic analysis
    """
    try:
        # Open and read the text file
        with open(document_path, 'r', encoding='utf-8') as file:
            text = file.read()
        
        # Extract basic metadata
        metadata = {
            "title": os.path.basename(document_path),
            "file_size": os.path.getsize(document_path)
        }
        
        # Calculate basic text statistics
        words = word_tokenize(text)
        word_count = len(words)
        unique_words = len(set(words))
        
        # Compile features
        features = {
            "text": text,
            "metadata": metadata,
            "statistics": {
                "word_count": word_count,
                "unique_words": unique_words,
                "text_length": len(text)
            }
        }
        
        return json.dumps(features)
    except Exception as e:
        return json.dumps({"error": str(e), "text": "", "metadata": {}})

@tool
def extract_features_tool(document_path: str) -> str:
    """
    Unified feature extraction tool that detects file type and calls the appropriate extractor.
    
    Args:
        document_path (str): Path to the document
        
    Returns:
        str: JSON string with extracted features
    """
    # Determine file type based on extension
    if document_path.lower().endswith('.pdf'):
        return extract_features_from_pdf(document_path)
    elif document_path.lower().endswith(('.txt', '.md', '.py', '.json')):
        return extract_features_from_text(document_path)
    else:
        # Default to text extraction for unknown file types
        try:
            return extract_features_from_text(document_path)
        except:
            # If text extraction fails, return error
            return json.dumps({
                "error": f"Unsupported file type for {document_path}",
                "text": "",
                "metadata": {}
            })

# ============================================================
# Analysis Tools
# ============================================================

@tool
def analyze_text_tool(features_json: str) -> str:
    """
    Analyzes the extracted features and returns the result as a JSON string.
    Performs text summarization, keyword extraction, and sentiment analysis.
    
    Args:
        features_json (str): JSON string with extracted document features
        
    Returns:
        str: JSON string with analysis results
    """
    features = json.loads(features_json)
    
    # Check if there was an error in feature extraction
    if "error" in features and features["error"]:
        return json.dumps({"error": features["error"]})
    
    text = features.get("text", "")
    
    if not text:
        return json.dumps({"error": "No text found for analysis"})
    
    # Perform basic text preprocessing
    tokens = word_tokenize(text.lower())
    stop_words = set(stopwords.words('english'))
    punctuation = set(string.punctuation)
    filtered_tokens = [word for word in tokens if word not in stop_words and word not in punctuation and len(word) > 2]
    
    # Extract keywords based on frequency
    word_freq = Counter(filtered_tokens)
    keywords = [word for word, count in word_freq.most_common(10)]
    
    # Create a basic summary (first 500 characters or first 3 sentences)
    sentences = re.split(r'(?<=[.!?])\s+', text)
    summary = " ".join(sentences[:min(3, len(sentences))])
    if len(summary) > 500:
        summary = summary[:497] + "..."
    
    # Perform very basic sentiment analysis
    positive_words = ['good', 'great', 'excellent', 'positive', 'amazing', 'wonderful', 'best', 'happy']
    negative_words = ['bad', 'worst', 'terrible', 'negative', 'awful', 'poor', 'wrong', 'unhappy']
    
    positive_count = sum(1 for word in filtered_tokens if word in positive_words)
    negative_count = sum(1 for word in filtered_tokens if word in negative_words)
    
    # Determine sentiment based on simple word count
    if positive_count > negative_count:
        sentiment = "positive"
    elif negative_count > positive_count:
        sentiment = "negative"
    else:
        sentiment = "neutral"
    
    # Get the top 20 most frequent words for visualization
    top_words = {word: count for word, count in word_freq.most_common(20)}
    
    # Compile analysis results
    analysis_result = {
        "summary": summary,
        "keywords": keywords,
        "sentiment": sentiment,
        "top_words": top_words,
        "metadata": features.get("metadata", {}),
        "statistics": features.get("statistics", {})
    }
    
    return json.dumps(analysis_result)

# ============================================================
# Visualization Tools
# ============================================================

@tool
def visualize_data_tool(analysis_json: str) -> None:
    """
    Creates multiple visualizations from the analysis.
    Generates a word cloud, bar chart, and sentiment visualization.
    
    Args:
        analysis_json (str): JSON string with analysis results
    """
    analysis = json.loads(analysis_json)
    
    # Check if there was an error in analysis
    if "error" in analysis and analysis["error"]:
        print(f"Error in visualization: {analysis['error']}")
        return
    
    # Create a figure with subplots
    fig = plt.figure(figsize=(15, 12))
    
    # 1. Word Cloud - Top Left
    plt.subplot(2, 2, 1)
    
    # Use summary and keywords for the word cloud
    text_for_cloud = analysis["summary"] + " " + " ".join(analysis["keywords"] * 3)
    wordcloud = WordCloud(
        width=800, 
        height=400, 
        background_color="white", 
        max_words=100, 
        contour_width=3, 
        contour_color='steelblue'
    ).generate(text_for_cloud)
    
    plt.imshow(wordcloud, interpolation="bilinear")
    plt.axis("off")
    plt.title("Word Cloud of Document Content")
    
    # 2. Top Words Bar Chart - Top Right
    plt.subplot(2, 2, 2)
    
    top_words = analysis.get("top_words", {})
    words = list(top_words.keys())[:10]  # Limit to top 10 for readability
    counts = [top_words[word] for word in words]
    
    plt.barh(words, counts, color='skyblue')
    plt.xlabel('Frequency')
    plt.ylabel('Words')
    plt.title('Top 10 Most Frequent Words')
    plt.gca().invert_yaxis()  # Display in descending order
    
    # 3. Document Statistics - Bottom Left
    plt.subplot(2, 2, 3)
    
    statistics = analysis.get("statistics", {})
    if statistics:
        labels = list(statistics.keys())
        values = list(statistics.values())
        
        colors = ['#ff9999','#66b3ff','#99ff99','#ffcc99']
        explode = [0.1] * len(values)  # explode all slices slightly
        
        plt.pie(values, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', startangle=90)
        plt.axis('equal')
        plt.title('Document Statistics')
    else:
        plt.text(0.5, 0.5, "No statistics available", ha='center', va='center')
        plt.axis('off')
    
    # 4. Sentiment Analysis - Bottom Right
    plt.subplot(2, 2, 4)
    
    sentiment = analysis.get("sentiment", "neutral")
    sentiment_values = {
        "positive": 1,
        "neutral": 0,
        "negative": -1
    }
    
    sentiment_color = {
        "positive": "green",
        "neutral": "gray",
        "negative": "red"
    }
    
    plt.bar(["Sentiment"], [sentiment_values[sentiment]], color=sentiment_color[sentiment])
    plt.ylim(-1.2, 1.2)
    plt.title(f'Document Sentiment: {sentiment.capitalize()}')
    
    # Adjust layout and display
    plt.tight_layout()
    plt.show()
    
    # Generate additional visualization: Word frequency trend
    if "top_words" in analysis:
        plt.figure(figsize=(12, 6))
        
        top_words = analysis["top_words"]
        words = list(top_words.keys())[:15]  # Top 15 words
        counts = [top_words[word] for word in words]
        
        # Create DataFrame for Seaborn
        df = pd.DataFrame({
            'Word': words,
            'Frequency': counts
        })
        
        # Create Seaborn bar plot
        sns.barplot(x='Frequency', y='Word', data=df, palette='viridis')
        plt.title('Word Frequency Distribution')
        plt.tight_layout()
        plt.show()

# ============================================================
# Web Search Tool
# ============================================================

# Using the built-in DuckDuckGoSearchTool from smolagents
web_search_tool = DuckDuckGoSearchTool()

@tool
def perform_web_search(analysis_json: str) -> str:
    """
    Performs web searches based on keywords from the analysis.
    
    Args:
        analysis_json (str): JSON string with analysis results
        
    Returns:
        str: JSON string with search results
    """
    analysis = json.loads(analysis_json)
    
    # Check if there was an error in analysis
    if "error" in analysis and analysis["error"]:
        return json.dumps({"error": analysis["error"]})
    
    # Get keywords for search
    keywords = analysis.get("keywords", [])
    if not keywords:
        return json.dumps({"error": "No keywords available for search"})
    
    # Take top 3 keywords for searching
    top_keywords = keywords[:min(3, len(keywords))]
    search_query = " ".join(top_keywords)
    
    try:
        # Perform web search
        search_results = web_search_tool(search_query)
        
        # Compile search results
        results = {
            "query": search_query,
            "keywords_used": top_keywords,
            "results": search_results[:5]  # Limit to top 5 results
        }
        
        return json.dumps(results)
    except Exception as e:
        return json.dumps({"error": str(e)})

# ============================================================
# Set up the language model
# ============================================================

model = HfApiModel(model_id="meta-llama/Llama-3.3-70B-Instruct")  # Requires HF token with access
# Alternative models if access to Llama is restricted:
# model = HfApiModel(model_id="mistralai/Mistral-7B-Instruct-v0.2")
# model = HfApiModel(model_id="google/gemma-7b")

# ============================================================
# Define specialized agents
# ============================================================

document_extraction_agent = CodeAgent(
    tools=[extract_features_tool, extract_features_from_pdf, extract_features_from_text],
    model=model,
    name="document_extraction_agent",
    description="Extracts features from documents using specialized extraction tools for different file types"
)

analysis_agent = CodeAgent(
    tools=[analyze_text_tool],
    model=model,
    name="analysis_agent",
    description="Analyzes extracted document features including summarization, keyword extraction and sentiment analysis"
)

visualization_agent = CodeAgent(
    tools=[visualize_data_tool],
    model=model,
    name="visualization_agent",
    description="Visualizes analysis results through multiple visualizations including word clouds and charts"
)

web_search_agent = CodeAgent(
    tools=[perform_web_search, web_search_tool],
    model=model,
    name="web_search_agent",
    description="Performs web searches based on keywords extracted from document analysis"
)

# ============================================================
# Define the manager agent
# ============================================================

manager_agent = CodeAgent(
    tools=[],
    model=model,
    managed_agents=[document_extraction_agent, analysis_agent, visualization_agent, web_search_agent],
    name="manager_agent",
    description="Coordinates the document processing workflow between all specialized agents"
)

# ============================================================
# Main function to process a document
# ============================================================

def process_document(document_path: str):
    """
    Processes a document through the multi-agent system.
    
    Args:
        document_path (str): Path to the document in Colab environment.
    """
    print(f"Starting processing of document: {document_path}")
    
    try:
        # Run the manager agent with a detailed prompt
        result = manager_agent.run(
            f"Process the document at '{document_path}' following these steps in order: "
            "1. Extract features from the document using document_extraction_agent - detect file type and use the appropriate extraction method. "
            "2. Analyze the extracted features using analysis_agent to generate a summary, extract keywords, and perform sentiment analysis. "
            "3. Create visualizations of the analysis using visualization_agent, including a word cloud and frequency charts. "
            "4. Perform web searches using web_search_agent based on the top keywords from the analysis. "
            "Return a comprehensive report of the findings from each step."
        )
        
        print("\n========== PROCESSING COMPLETED ==========")
        print("Result:", result)
        print("===========================================\n")
        
        return result
    
    except Exception as e:
        print(f"Error during processing: {e}")
        import traceback
        traceback.print_exc()
        return f"Processing failed: {str(e)}"

# ============================================================
# Example usage in Colab
# ============================================================

# Upload a document to Colab
from google.colab import files
print("Please upload a document (PDF, TXT, etc.)")
uploaded = files.upload()  # Upload your document

if uploaded:
    # Get the uploaded file's name
    document_path = list(uploaded.keys())[0]
    
    # Process the document
    process_document(document_path)
else:
    print("No document was uploaded. Please run the cell again and upload a document.")

ERROR:

Application of artificial neural networks to the prediction of tunnel boring machine penetration rate.pdf(application/pdf) - 2631707 bytes, last modified: 6/12/2021 - 100% done
Saving Application of artificial neural networks to the prediction of tunnel boring machine penetration rate.pdf to Application of artificial neural networks to the prediction of tunnel boring machine penetration rate.pdf
Starting processing of document: Application of artificial neural networks to the prediction of tunnel boring machine penetration rate.pdf
โ•ญโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ New run - manager_agent โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ
โ”‚                                                                                                                 โ”‚
โ”‚ Process the document at 'Application of artificial neural networks to the prediction of tunnel boring machine   โ”‚
โ”‚ penetration rate.pdf' following these steps in order: 1. Extract features from the document using               โ”‚
โ”‚ document_extraction_agent - detect file type and use the appropriate extraction method. 2. Analyze the          โ”‚
โ”‚ extracted features using analysis_agent to generate a summary, extract keywords, and perform sentiment          โ”‚
โ”‚ analysis. 3. Create visualizations of the analysis using visualization_agent, including a word cloud and        โ”‚
โ”‚ frequency charts. 4. Perform web searches using web_search_agent based on the top keywords from the analysis.   โ”‚
โ”‚ Return a comprehensive report of the findings from each step.                                                   โ”‚
โ”‚                                                                                                                 โ”‚
โ•ฐโ”€ HfApiModel - meta-llama/Llama-3.3-70B-Instruct โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” Step 1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
Error in generating model output:
402 Client Error: Payment Required for url: 
https://router.huggingface.co/hf-inference/models/meta-llama/Llama-3.3-70B-Instruct/v1/chat/completions (Request 
ID: Root=1-67e420cf-1ec0ac2a3a3102965c52fe0f;8fe0d876-5406-4953-9fd4-e7b03cd17bb5)

You have exceeded your monthly included credits for Inference Providers. Subscribe to PRO to get 20x more monthly 
included credits.
[Step 1: Duration 0.59 seconds]
Error during processing: Error in generating model output:
402 Client Error: Payment Required for url: https://router.huggingface.co/hf-inference/models/meta-llama/Llama-3.3-70B-Instruct/v1/chat/completions (Request ID: Root=1-67e420cf-1ec0ac2a3a3102965c52fe0f;8fe0d876-5406-4953-9fd4-e7b03cd17bb5)

You have exceeded your monthly included credits for Inference Providers. Subscribe to PRO to get 20x more monthly included credits.
Traceback (most recent call last):
  File "/usr/local/lib/python3.11/dist-packages/huggingface_hub/utils/_http.py", line 409, in hf_raise_for_status
    response.raise_for_status()
  File "/usr/local/lib/python3.11/dist-packages/requests/models.py", line 1024, in raise_for_status
    raise HTTPError(http_error_msg, response=self)
requests.exceptions.HTTPError: 402 Client Error: Payment Required for url: https://router.huggingface.co/hf-inference/models/meta-llama/Llama-3.3-70B-Instruct/v1/chat/completions

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "/usr/local/lib/python3.11/dist-packages/smolagents/agents.py", line 1186, in step
    chat_message: ChatMessage = self.model(
                                ^^^^^^^^^^^
  File "/usr/local/lib/python3.11/dist-packages/smolagents/models.py", line 994, in __call__
    response = self.client.chat_completion(**completion_kwargs)
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/usr/local/lib/python3.11/dist-packages/huggingface_hub/inference/_client.py", line 956, in chat_completion
    data = self._inner_post(request_parameters, stream=stream)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/usr/local/lib/python3.11/dist-packages/huggingface_hub/inference/_client.py", line 321, in _inner_post
    hf_raise_for_status(response)
  File "/usr/local/lib/python3.11/dist-packages/huggingface_hub/utils/_http.py", line 481, in hf_raise_for_status
    raise _format(HfHubHTTPError, str(e), response) from e
huggingface_hub.errors.HfHubHTTPError: 402 Client Error: Payment Required for url: https://router.huggingface.co/hf-inference/models/meta-llama/Llama-3.3-70B-Instruct/v1/chat/completions (Request ID: Root=1-67e420cf-1ec0ac2a3a3102965c52fe0f;8fe0d876-5406-4953-9fd4-e7b03cd17bb5)

You have exceeded your monthly included credits for Inference Providers. Subscribe to PRO to get 20x more monthly included credits.

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "<ipython-input-2-833afc1baaa9>", line 471, in process_document
    result = manager_agent.run(
             ^^^^^^^^^^^^^^^^^^
  File "/usr/local/lib/python3.11/dist-packages/smolagents/agents.py", line 323, in run
    return deque(self._run(task=self.task, max_steps=max_steps, images=images), maxlen=1)[0]
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/usr/local/lib/python3.11/dist-packages/smolagents/agents.py", line 337, in _run
    raise e
  File "/usr/local/lib/python3.11/dist-packages/smolagents/agents.py", line 334, in _run
    final_answer = self._execute_step(task, memory_step)
                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/usr/local/lib/python3.11/dist-packages/smolagents/agents.py", line 358, in _execute_step
    final_answer = self.step(memory_step)
                   ^^^^^^^^^^^^^^^^^^^^^^
  File "/usr/local/lib/python3.11/dist-packages/smolagents/agents.py", line 1202, in step
    raise AgentGenerationError(f"Error in generating model output:\n{e}", self.logger) from e
smolagents.utils.AgentGenerationError: Error in generating model output:
402 Client Error: Payment Required for url: https://router.huggingface.co/hf-inference/models/meta-llama/Llama-3.3-70B-Instruct/v1/chat/completions (Request ID: Root=1-67e420cf-1ec0ac2a3a3102965c52fe0f;8fe0d876-5406-4953-9fd4-e7b03cd17bb5)

You have exceeded your monthly included credits for Inference Providers. Subscribe to PRO to get 20x more monthly included credits.
1 Like