Hello everyone,
I’m a beginner in AI. I’m trying to fine tune the “bofenghuang/vigogne-2-7b-instruct” model to accomplish one specific task. I have a dataset of 30k examples. I fine tune the model using thé LoRA technique and the Stanford Alpaca prompt pattern.
I use the following code to fine tune it :
from datasets import load_dataset
from google.colab import drive
drive.mount("./drive")
train_dataset = load_dataset("csv", data_files="./drive/MyDrive/DATA/train3.csv")
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoTokenizer
model_name = "bofenghuang/vigogne-2-7b-instruct"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
trust_remote_code=True
)
model.config.use_cache = False
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
from peft import LoraConfig, get_peft_model
lora_alpha = 16
lora_dropout = 0.1
lora_r = 64
peft_config = LoraConfig(
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
r=lora_r,
bias="none",
task_type="CAUSAL_LM"
)
from transformers import TrainingArguments
output_dir = "results"
per_device_train_batch_size = 4
gradient_accumulation_steps = 4
optim = "paged_adamw_32bit"
save_steps = 100
logging_steps = 10
learning_rate = 2e-4
max_grad_norm = 0.3
max_steps = 500
warmup_ratio = 0.03
lr_scheduler_type = "constant"
training_arguments = TrainingArguments(
output_dir=output_dir,
per_device_train_batch_size=per_device_train_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
optim=optim,
save_steps=save_steps,
logging_steps=logging_steps,
learning_rate=learning_rate,
fp16=True,
max_grad_norm=max_grad_norm,
max_steps=max_steps,
warmup_ratio=warmup_ratio,
group_by_length=True,
lr_scheduler_type=lr_scheduler_type,
)
from trl import SFTTrainer
max_seq_length = 512
trainer = SFTTrainer(
model=model,
train_dataset=train_dataset["train"],
peft_config=peft_config,
dataset_text_field="text",
max_seq_length=max_seq_length,
tokenizer=tokenizer,
args=training_arguments,
)
for name, module in trainer.model.named_modules():
if "norm" in name:
module = module.to(torch.float32)
trainer.train()
model_to_save = trainer.model.module if hasattr(trainer.model, 'module') else trainer.model # Take care of distributed/parallel training
model_to_save.save_pretrained("outputs")
After that it accomplish the wanted task perfectly. But when I restart the colab runtime and load the model with thé produced adapter using the following code :
lora_config = LoraConfig.from_pretrained('results/checkpoint-500')
model = get_peft_model(model, lora_config)
The model is completly failling, it just remember a little bit, but in somme case it forget everything.
Do you know why this is happening.
Thanks you.