When I run this code
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
where transformers version == 4.44.2
then I print the model object, I get
M2M100ForConditionalGeneration(
(model): M2M100Model(
(shared): M2M100ScaledWordEmbedding(256206, 1024, padding_idx=1)
(encoder): M2M100Encoder(
(embed_tokens): M2M100ScaledWordEmbedding(256206, 1024, padding_idx=1)
(embed_positions): M2M100SinusoidalPositionalEmbedding()
(layers): ModuleList(
(0-11): 12 x M2M100EncoderLayer(
(self_attn): M2M100Attention(
(k_proj): Linear(in_features=1024, out_features=1024, bias=True)
(v_proj): Linear(in_features=1024, out_features=1024, bias=True)
(q_proj): Linear(in_features=1024, out_features=1024, bias=True)
(out_proj): Linear(in_features=1024, out_features=1024, bias=True)
)
.........
Any reason why my object is returning the M2M100 model instead of the NLLB model? I tried this inside a Jupyter notebook and my local env, and I get the same result.