"Context engineering is the delicate art and science of filling the context window with just the right information for the next step." — Andrej Karpathy. A frontier, first-principles handbook inspired by Karpathy and 3Blue1Brown for moving beyond prompt engineering to the wider discipline of context design, orchestration, and optimization.
Context Engineering Course: From Foundations to Frontier Systems
“Language is power, in ways more literal than most people think. When we speak, we exercise the power of language to transform reality.”
— Julia Penelope
Comprehensive Course Under Construction
A Systematic Analysis of Over 1400 Research Papers — A Survey of Context Engineering for Large Language Models
Building from practical, intuitive, and visual first principles
Course Architecture Overview
This comprehensive Context Engineering course synthesizes cutting-edge research from the 2025 survey paper with practical implementation frameworks. The course follows a systematic progression from foundational mathematical principles to advanced meta-recursive systems, emphasizing practical, visual, and intuitive learning.
╭─────────────────────────────────────────────────────────────╮
│ CONTEXT ENGINEERING MASTERY COURSE │
│ From Zero to Frontier │
╰─────────────────────────────────────────────────────────────╯
▲
│
Mathematical Foundations
C = A(c₁, c₂, ..., cₙ)
│
▼
┌─────────────┬──────────────┬──────────────┬─────────────────┐
│ FOUNDATIONS │ SYSTEM IMPL │ INTEGRATION │ FRONTIER │
│ (Weeks 1-4) │ (Weeks 5-8) │ (Weeks 9-10) │ (Weeks 11-12) │
└─────┬───────┴──────┬───────┴──────┬───────┴─────────┬───────┘
│ │ │ │
▼ ▼ ▼ ▼
┌─────────────┐ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐
│ Math Models │ │ RAG Systems │ │ Multi-Agent │ │ Meta-Recurs │
│ Components │ │ Memory Arch │ │ Orchestrat │ │ Quantum Sem │
│ Processing │ │ Tool Integr │ │ Field Theory │ │ Self-Improv │
│ Management │ │ Agent Systems│ │ Evaluation │ │ Collaboration│
└─────────────┘ └──────────────┘ └──────────────┘ └──────────────┘
Course Learning Trajectory
Week-by-Week Progression
Weeks 1-2: Mathematical Foundations & Core Theory
Week 1 : Context formalization, optimization theory, information-theoretic principles
Week 2 : Bayesian inference, context component analysis, practical implementations
Learning Outcomes : Students understand the mathematical foundation C = A(c₁, c₂, …, cₙ) and can implement basic context assembly functions.
Key Projects :
Context formalization calculator
Optimization landscape visualizer
Bayesian context inference demo
Weeks 3-4: Context Components Mastery
Week 3 : Context retrieval and generation (prompt engineering, RAG foundations, dynamic assembly)
Week 4 : Context processing (long sequences, self-refinement, multimodal integration)
Learning Outcomes : Students can design sophisticated prompts, implement basic RAG systems, and handle multimodal context processing.
Key Projects :
Advanced prompt engineering toolkit
Basic RAG implementation
Multimodal context processor
Weeks 5-6: System Implementation Foundations
Week 5 : Advanced RAG architectures (modular, agentic, graph-enhanced)
Week 6 : Memory systems and persistent context management
Learning Outcomes : Students can build modular RAG systems and implement sophisticated memory architectures.
Key Projects :
Modular RAG framework
Hierarchical memory system
Agent-driven retrieval system
Weeks 7-8: Tool Integration & Multi-Agent Systems
Week 7 : Tool-integrated reasoning and function calling mechanisms
Week 8 : Multi-agent communication and orchestration
Learning Outcomes : Students can create tool-augmented agents and design multi-agent coordination systems.
Key Projects :
Tool-integrated reasoning agent
Multi-agent communication framework
Collaborative problem-solving system
Weeks 9-10: Advanced Integration & Field Theory
Week 9 : Neural field theory and attractor dynamics in context engineering
Week 10 : Evaluation methodologies and orchestration capstone
Learning Outcomes : Students understand field-theoretic approaches to context and can evaluate complex context engineering systems.
Key Projects :
Field dynamics visualization system
Comprehensive evaluation framework
End-to-end context engineering platform
Weeks 11-12: Frontier Research & Meta-Recursive Systems
Week 11 : Meta-recursive systems, quantum semantics, interpretability scaffolding
Week 12 : Collaborative evolution and cross-modal integration
Learning Outcomes : Students engage with cutting-edge research and can implement self-improving, interpretable systems.
Key Projects :
Meta-recursive improvement system
Interpretability toolkit
Cross-modal integration platform
Assessment Strategy
Progressive Assessment Framework
Mathematical Foundations (20%)
Theoretical understanding assessments
Implementation of core algorithms
Visualization of mathematical concepts
Component Mastery (25%)
Individual component implementations
Integration challenges
Performance optimization tasks
System Implementation (25%)
Complete system builds
Architecture design challenges
Real-world application projects
Capstone Integration (20%)
End-to-end system development
Novel application creation
System evaluation and analysis
Frontier Research (10%)
Research paper analysis
Novel technique implementation
Future direction proposals
Practical Assessment Components
Weekly Labs : Hands-on implementation exercises
Progressive Projects : Building complexity over time
Peer Review : Collaborative evaluation process
Portfolio Development : Cumulative work showcase
Research Presentations : Frontier technique exploration
Pedagogical Approach
Visual and Intuitive Learning
ASCII Art Diagrams : Complex system visualization through text art
Interactive Visualizations : Dynamic system behavior exploration
Metaphorical Frameworks : Garden, river, and architectural metaphors
Progressive Complexity : Scaffolded learning from simple to sophisticated
Hands-on Implementation : Theory immediately applied in practice
Directory Structure: /00_COURSE
Part I: Mathematical Foundations & Core Components (Weeks 1-4)
00_COURSE/
├── 00_mathematical_foundations/
│ ├── 00_introduction.md # Course overview and context engineering paradigm
│ ├── 01_context_formalization.md # C = A(c₁, c₂, ..., cₙ) framework
│ ├── 02_optimization_theory.md # F* = arg max objective functions
│ ├── 03_information_theory.md # Mutual information maximization
│ ├── 04_bayesian_inference.md # Posterior context inference
│ ├── exercises/
│ │ ├── math_foundations_lab.ipynb # Interactive mathematical concepts
│ │ └── context_formalization_demo.py # Practical implementation
│ └── visualizations/
│ ├── context_assembly_flow.svg # Visual representation of C = A(...)
│ └── optimization_landscape.py # 3D optimization visualization
│
├── 01_context_retrieval_generation/
│ ├── 00_overview.md # Foundational concepts
│ ├── 01_prompt_engineering.md # Advanced prompting techniques
│ ├── 02_external_knowledge.md # RAG foundations
│ ├── 03_dynamic_assembly.md # Context composition strategies
│ ├── labs/
│ │ ├── prompt_engineering_lab.ipynb # Chain-of-thought, few-shot, etc.
│ │ ├── knowledge_retrieval_lab.ipynb # Vector databases, semantic search
│ │ └── dynamic_assembly_lab.ipynb # Context orchestration
│ ├── templates/
│ │ ├── prompt_templates.yaml # Reusable prompt patterns
│ │ ├── retrieval_configs.json # RAG configuration templates
│ │ └── assembly_patterns.py # Context assembly patterns
│ └── case_studies/
│ ├── domain_specific_prompting.md # Medical, legal, technical domains
│ └── retrieval_optimization.md # Real-world retrieval challenges
│
├── 02_context_processing/
│ ├── 00_overview.md # Processing pipeline concepts
│ ├── 01_long_context_processing.md # Extended sequence handling
│ ├── 02_self_refinement.md # Adaptive context improvement
│ ├── 03_multimodal_context.md # Cross-modal integration
│ ├── 04_structured_context.md # Graph and relational data
│ ├── labs/
│ │ ├── long_context_lab.ipynb # Attention mechanisms, memory
│ │ ├── self_refinement_lab.ipynb # Iterative improvement loops
│ │ ├── multimodal_lab.ipynb # Text + image + audio context
│ │ └── structured_data_lab.ipynb # Knowledge graphs, schemas
│ ├── implementations/
│ │ ├── attention_mechanisms.py # Custom attention implementations
│ │ ├── refinement_loops.py # Self-improvement algorithms
│ │ └── multimodal_processors.py # Cross-modal processors
│ └── benchmarks/
│ ├── long_context_evaluation.py # Performance measurement
│ └── processing_metrics.py # Quality assessment tools
│
└── 03_context_management/
├── 00_overview.md # Management principles
├── 01_fundamental_constraints.md # Computational limits
├── 02_memory_hierarchies.md # Storage architectures
├── 03_compression_techniques.md # Information compression
├── 04_optimization_strategies.md # Efficiency optimization
├── labs/
│ ├── memory_management_lab.ipynb # Memory hierarchy implementation
│ ├── compression_lab.ipynb # Context compression techniques
│ └── optimization_lab.ipynb # Performance optimization
├── tools/
│ ├── memory_profiler.py # Memory usage analysis
│ ├── compression_analyzer.py # Compression efficiency tools
│ └── performance_monitor.py # Real-time performance tracking
└── architectures/
├── hierarchical_memory.py # Multi-level memory systems
└── adaptive_compression.py # Dynamic compression strategies
Part II: System Implementations (Weeks 5-8)
├── 04_retrieval_augmented_generation/
│ ├── 00_rag_fundamentals.md # RAG theory and principles
│ ├── 01_modular_architectures.md # Component-based RAG systems
│ ├── 02_agentic_rag.md # Agent-driven retrieval
│ ├── 03_graph_enhanced_rag.md # Knowledge graph integration
│ ├── 04_advanced_applications.md # Domain-specific implementations
│ ├── projects/
│ │ ├── basic_rag_system/ # Simple RAG implementation
│ │ │ ├── vector_store.py # Vector database setup
│ │ │ ├── retriever.py # Retrieval algorithms
│ │ │ └── generator.py # Response generation
│ │ ├── modular_rag_framework/ # Advanced modular system
│ │ │ ├── components/ # Pluggable components
│ │ │ ├── orchestrator.py # Component coordination
│ │ │ └── evaluation.py # System evaluation
│ │ ├── agentic_rag_demo/ # Agent-based retrieval
│ │ │ ├── reasoning_agent.py # Query reasoning
│ │ │ ├── retrieval_agent.py # Retrieval planning
│ │ │ └── synthesis_agent.py # Response synthesis
│ │ └── graph_rag_system/ # Knowledge graph RAG
│ │ ├── graph_builder.py # Graph construction
│ │ ├── graph_retriever.py # Graph-based retrieval
│ │ └── graph_reasoner.py # Graph reasoning
│ ├── datasets/
│ │ ├── evaluation_corpora/ # Standard evaluation datasets
│ │ └── domain_datasets/ # Specialized domain data
│ └── evaluations/
│ ├── rag_benchmarks.py # Comprehensive evaluation suite
│ └── performance_metrics.py # RAG-specific metrics
│
├── 05_memory_systems/
│ ├── 00_memory_architectures.md # Memory system design
│ ├── 01_persistent_memory.md # Long-term memory storage
│ ├── 02_memory_enhanced_agents.md # Agent memory integration
│ ├── 03_evaluation_challenges.md # Memory system evaluation
│ ├── implementations/
│ │ ├── basic_memory_system/ # Simple memory implementation
│ │ │ ├── short_term_memory.py # Working memory
│ │ │ ├── long_term_memory.py # Persistent storage
│ │ │ └── memory_manager.py # Memory coordination
│ │ ├── hierarchical_memory/ # Multi-level memory
│ │ │ ├── episodic_memory.py # Event-based memory
│ │ │ ├── semantic_memory.py # Concept-based memory
│ │ │ └── procedural_memory.py # Skill-based memory
│ │ └── memory_enhanced_agent/ # Complete agent with memory
│ │ ├── agent_core.py # Core agent logic
│ │ ├── memory_interface.py # Memory interaction layer
│ │ └── learning_mechanisms.py # Memory-based learning
│ ├── benchmarks/
│ │ ├── memory_evaluation_suite.py # Comprehensive memory tests
│ │ └── persistence_tests.py # Long-term retention tests
│ └── case_studies/
│ ├── conversational_memory.md # Chat-based applications
│ └── task_memory.md # Task-oriented memory
│
├── 06_tool_integrated_reasoning/
│ ├── 00_function_calling.md # Function calling fundamentals
│ ├── 01_tool_integration.md # Tool integration strategies
│ ├── 02_agent_environment.md # Environment interaction
│ ├── 03_reasoning_frameworks.md # Tool-augmented reasoning
│ ├── toolkits/
│ │ ├── basic_function_calling/ # Simple function integration
│ │ │ ├── function_registry.py # Function management
│ │ │ ├── parameter_validation.py # Input validation
│ │ │ └── execution_engine.py # Safe execution
│ │ ├── advanced_tool_system/ # Sophisticated tool integration
│ │ │ ├── tool_discovery.py # Dynamic tool finding
│ │ │ ├── planning_engine.py # Multi-step tool planning
│ │ │ └── result_synthesis.py # Result integration
│ │ └── environment_agents/ # Environment interaction
│ │ ├── web_interaction.py # Web-based tools
│ │ ├── file_system.py # File manipulation
│ │ └── api_integration.py # External API calls
│ ├── examples/
│ │ ├── calculator_agent.py # Mathematical reasoning
│ │ ├── research_assistant.py # Information gathering
│ │ └── code_assistant.py # Programming support
│ └── safety/
│ ├── execution_sandboxing.py # Safe execution environments
│ └── permission_systems.py # Access control
│
└── 07_multi_agent_systems/
├── 00_communication_protocols.md # Agent communication
├── 01_orchestration_mechanisms.md # Multi-agent coordination
├── 02_coordination_strategies.md # Collaborative strategies
├── 03_emergent_behaviors.md # Emergence in multi-agent systems
├── frameworks/
│ ├── basic_multi_agent/ # Simple multi-agent system
│ │ ├── agent_base.py # Base agent class
│ │ ├── message_passing.py # Communication layer
│ │ └── coordinator.py # Central coordination
│ ├── distributed_agents/ # Decentralized systems
│ │ ├── peer_to_peer.py # P2P communication
│ │ ├── consensus_mechanisms.py # Agreement protocols
│ │ └── distributed_planning.py # Collaborative planning
│ └── hierarchical_systems/ # Hierarchical agent organizations
│ ├── manager_agents.py # Supervisory agents
│ ├── worker_agents.py # Task execution agents
│ └── delegation_protocols.py # Task delegation
├── applications/
│ ├── collaborative_writing.py # Multi-agent content creation
│ ├── research_teams.py # Research collaboration
│ └── problem_solving.py # Distributed problem solving
└── evaluation/
├── coordination_metrics.py # Coordination effectiveness
└── emergence_detection.py # Emergent behavior analysis
Part III: Advanced Integration & Field Theory (Weeks 9-10)
├── 08_field_theory_integration/
│ ├── 00_neural_field_foundations.md # Context as continuous field
│ ├── 01_attractor_dynamics.md # Semantic attractors
│ ├── 02_field_resonance.md # Field harmonization
│ ├── 03_boundary_management.md # Field boundaries
│ ├── implementations/
│ │ ├── field_visualization/ # Field state visualization
│ │ │ ├── attractor_plots.py # Attractor visualization
│ │ │ ├── field_dynamics.py # Dynamic field representation
│ │ │ └── resonance_maps.py # Resonance visualization
│ │ ├── protocol_shells/ # Field operation protocols
│ │ │ ├── attractor_emergence.py # Attractor formation
│ │ │ ├── field_resonance.py # Resonance optimization
│ │ │ └── boundary_adaptation.py # Dynamic boundaries
│ │ └── unified_field_engine/ # Integrated field operations
│ │ ├── field_state_manager.py # Field state tracking
│ │ ├── context_field_processor.py # Field-based processing
│ │ └── emergence_detector.py # Emergence monitoring
│ ├── labs/
│ │ ├── field_dynamics_lab.ipynb # Interactive field exploration
│ │ ├── attractor_formation_lab.ipynb # Attractor creation and tuning
│ │ └── resonance_optimization_lab.ipynb # Field harmonization
│ └── case_studies/
│ ├── conversation_fields.md # Conversational context fields
│ └── knowledge_fields.md # Knowledge representation fields
│
├── 09_evaluation_methodologies/
│ ├── 00_evaluation_frameworks.md # Comprehensive evaluation approaches
│ ├── 01_component_assessment.md # Individual component evaluation
│ ├── 02_system_integration.md # End-to-end system evaluation
│ ├── 03_benchmark_design.md # Creating effective benchmarks
│ ├── tools/
│ │ ├── evaluation_harness/ # Automated evaluation framework
│ │ │ ├── test_runner.py # Test execution engine
│ │ │ ├── metric_calculator.py # Performance metrics
│ │ │ └── report_generator.py # Evaluation reporting
│ │ ├── benchmark_suite/ # Comprehensive benchmark collection
│ │ │ ├── context_understanding.py # Context comprehension tests
│ │ │ ├── generation_quality.py # Output quality assessment
│ │ │ └── efficiency_tests.py # Performance benchmarks
│ │ └── comparative_analysis/ # System comparison tools
│ │ ├── ablation_studies.py # Component contribution analysis
│ │ └── performance_profiling.py # Detailed performance analysis
│ ├── benchmarks/
│ │ ├── context_engineering_suite/ # CE-specific benchmarks
│ │ └── integration_tests/ # System integration tests
│ └── methodologies/
│ ├── human_evaluation.md # Human assessment protocols
│ └── automated_evaluation.md # Automated assessment strategies
│
└── 10_orchestration_capstone/
├── 00_capstone_overview.md # Capstone project guidelines
├── 01_system_architecture.md # Full system design
├── 02_integration_patterns.md # Component integration
├── 03_deployment_strategies.md # Production deployment
├── capstone_projects/
│ ├── intelligent_research_assistant/ # Complete research system
│ │ ├── architecture/ # System architecture
│ │ ├── components/ # System components
│ │ ├── integration/ # Component integration
│ │ └── evaluation/ # System evaluation
│ ├── adaptive_education_system/ # Personalized learning
│ │ ├── learner_modeling/ # Student representation
│ │ ├── content_adaptation/ # Dynamic content
│ │ └── progress_tracking/ # Learning analytics
│ └── collaborative_problem_solver/ # Multi-agent problem solving
│ ├── agent_coordination/ # Agent coordination
│ ├── knowledge_integration/ # Knowledge synthesis
│ └── solution_optimization/ # Solution refinement
├── deployment/
│ ├── production_guidelines.md # Production best practices
│ ├── scaling_strategies.md # System scaling approaches
│ └── monitoring_systems.md # System monitoring
└── portfolio/
├── project_showcase.md # Project demonstration
└── reflection_essays.md # Learning reflection
Part IV: Frontier Research & Meta-Recursive Systems (Weeks 11-12)
├── 11_meta_recursive_systems/
│ ├── 00_self_reflection_frameworks.md # Self-reflective architectures
│ ├── 01_recursive_improvement.md # Self-improvement mechanisms
│ ├── 02_emergent_awareness.md # Self-awareness development
│ ├── 03_symbolic_echo_processing.md # Symbolic pattern processing
│ ├── implementations/
│ │ ├── self_reflection_engine/ # Self-analysis system
│ │ │ ├── introspection_module.py # Self-examination
│ │ │ ├── meta_cognition.py # Meta-cognitive processes
│ │ │ └── self_assessment.py # Self-evaluation
│ │ ├── recursive_improvement/ # Self-enhancement system
│ │ │ ├── performance_monitor.py # Performance tracking
│ │ │ ├── improvement_planner.py # Enhancement planning
│ │ │ └── adaptation_engine.py # System adaptation
│ │ └── meta_recursive_agent/ # Complete meta-recursive agent
│ │ ├── recursive_core.py # Core recursive logic
│ │ ├── meta_layer_manager.py # Meta-level coordination
│ │ └── emergent_monitor.py # Emergence detection
│ ├── experiments/
│ │ ├── self_improvement_loops.ipynb # Recursive improvement experiments
│ │ ├── meta_learning_demos.ipynb # Meta-learning demonstrations
│ │ └── emergence_studies.ipynb # Emergent behavior analysis
│ └── research/
│ ├── theoretical_foundations.md # Meta-recursion theory
│ └── empirical_studies.md # Experimental results
│
├── 12_quantum_semantics/
│ ├── 00_observer_dependent_semantics.md # Quantum semantic theory
│ ├── 01_measurement_frameworks.md # Semantic measurement
│ ├── 02_superposition_states.md # Multi-state semantics
│ ├── 03_entanglement_effects.md # Semantic entanglement
│ ├── implementations/
│ │ ├── quantum_semantic_processor/ # Quantum-inspired semantics
│ │ │ ├── superposition_manager.py # Multi-state management
│ │ │ ├── measurement_system.py # Semantic measurement
│ │ │ └── entanglement_tracker.py # Relationship tracking
│ │ └── observer_dependent_context/ # Context dependence
│ │ ├── observer_model.py # Observer representation
│ │ ├── context_collapse.py # Context state collapse
│ │ └── measurement_effects.py # Measurement impact
│ ├── experiments/
│ │ ├── semantic_superposition.ipynb # Multi-meaning experiments
│ │ └── observer_effects.ipynb # Observer impact studies
│ └── applications/
│ ├── ambiguity_resolution.py # Ambiguity handling
│ └── context_dependent_meaning.py # Dynamic meaning systems
│
├── 13_interpretability_scaffolding/
│ ├── 00_transparency_frameworks.md # Interpretability approaches
│ ├── 01_attribution_mechanisms.md # Causal attribution
│ ├── 02_explanation_generation.md # Automated explanations
│ ├── 03_user_understanding.md # Human comprehension
│ ├── tools/
│ │ ├── interpretability_toolkit/ # Interpretation tools
│ │ │ ├── attention_visualizer.py # Attention analysis
│ │ │ ├── activation_analyzer.py # Activation interpretation
│ │ │ └── decision_tracer.py # Decision path tracking
│ │ ├── explanation_generator/ # Automated explanations
│ │ │ ├── natural_language_explainer.py # Text explanations
│ │ │ ├── visual_explainer.py # Visual explanations
│ │ │ └── interactive_explorer.py # Interactive exploration
│ │ └── user_study_framework/ # Human evaluation
│ │ ├── study_designer.py # User study design
│ │ ├── data_collector.py # Response collection
│ │ └── analysis_tools.py # Result analysis
│ ├── case_studies/
│ │ ├── medical_ai_interpretation.md # Healthcare AI explanation
│ │ └── legal_reasoning_transparency.md # Legal AI interpretation
│ └── evaluation/
│ ├── interpretability_metrics.py # Interpretation quality
│ └── user_comprehension_tests.py # Understanding assessment
│
├── 14_collaborative_evolution/
│ ├── 00_human_ai_partnership.md # Collaborative frameworks
│ ├── 01_co_evolution_dynamics.md # Mutual adaptation
│ ├── 02_shared_understanding.md # Common ground building
│ ├── 03_collaborative_learning.md # Joint learning processes
│ ├── frameworks/
│ │ ├── collaborative_agent/ # Human-AI collaboration
│ │ │ ├── human_model.py # Human behavior modeling
│ │ │ ├── adaptation_engine.py # Mutual adaptation
│ │ │ └── collaboration_manager.py # Interaction coordination
│ │ ├── co_evolution_system/ # Co-evolution platform
│ │ │ ├── evolution_tracker.py # Development tracking
│ │ │ ├── fitness_evaluator.py # Performance assessment
│ │ │ └── selection_mechanism.py # Adaptation selection
│ │ └── shared_cognition/ # Shared understanding
│ │ ├── mental_model_sync.py # Model synchronization
│ │ ├── knowledge_fusion.py # Knowledge integration
│ │ └── communication_optimizer.py # Communication enhancement
│ ├── applications/
│ │ ├── creative_collaboration.py # Creative partnerships
│ │ ├── scientific_discovery.py # Research collaboration
│ │ └── educational_partnerships.py # Learning partnerships
│ └── studies/
│ ├── collaboration_effectiveness.md # Partnership assessment
│ └── evolution_dynamics.md # Co-evolution patterns
│
└── 15_cross_modal_integration/
├── 00_unified_representation.md # Multi-modal unification
├── 01_modal_translation.md # Cross-modal translation
├── 02_synesthetic_processing.md # Cross-sensory integration
├── 03_emergent_modalities.md # New modality emergence
├── systems/
│ ├── cross_modal_processor/ # Multi-modal processing
│ │ ├── modality_encoder.py # Modal encoding
│ │ ├── cross_modal_attention.py # Inter-modal attention
│ │ └── unified_decoder.py # Unified output generation
│ ├── modal_translation_engine/ # Translation between modalities
│ │ ├── text_to_visual.py # Text-visual translation
│ │ ├── audio_to_text.py # Audio-text translation
│ │ └── multimodal_fusion.py # Multi-way fusion
│ └── synesthetic_system/ # Cross-sensory processing
│ ├── sensory_mapping.py # Cross-sensory mapping
│ ├── synesthetic_generator.py # Synesthetic responses
│ └── perceptual_fusion.py # Perceptual integration
├── experiments/
│ ├── cross_modal_creativity.ipynb # Creative cross-modal tasks
│ ├── translation_quality.ipynb # Translation assessment
│ └── emergent_modalities.ipynb # New modality exploration
└── applications/
├── accessibility_tools.py # Multi-modal accessibility
├── creative_synthesis.py # Cross-modal creativity
└── universal_interface.py # Unified interaction system
Supporting Infrastructure & Resources
├── 99_course_infrastructure/
│ ├── 00_setup_guide.md # Course environment setup
│ ├── 01_prerequisite_check.md # Knowledge prerequisites
│ ├── 02_development_environment.md # Development setup
│ ├── 03_evaluation_rubrics.md # Assessment criteria
│ ├── tools/
│ │ ├── environment_checker.py # Prerequisites validation
│ │ ├── progress_tracker.py # Learning progress
│ │ └── automated_grader.py # Assignment evaluation
│ ├── datasets/
│ │ ├── tutorial_datasets/ # Educational datasets
│ │ ├── benchmark_collections/ # Standard benchmarks
│ │ └── real_world_examples/ # Practical examples
│ ├── templates/
│ │ ├── project_template/ # Standard project structure
│ │ ├── notebook_template.ipynb # Jupyter notebook template
│ │ └── documentation_template.md # Documentation template
│ └── resources/
│ ├── reading_lists.md # Supplementary reading
│ ├── video_lectures.md # Video resources
│ └── community_resources.md # Community links
│
├── README.md # Course overview and navigation
├── SYLLABUS.md # Detailed syllabus
├── PREREQUISITES.md # Required background knowledge
├── SETUP.md # Environment setup instructions
├── LEARNING_OBJECTIVES.md # Course learning outcomes
├── ASSESSMENT_GUIDE.md # Evaluation methodology
└── RESOURCES.md # Additional resources and references