I am using the following code to run the DeepSeek-V3
My code
!pip install torch==2.4.1
!pip install torchvision==0.19.1
!pip install triton==3.0.0
# !pip install transformers==4.46.3
!pip install transformers==4.36.2
!pip install bitsandbytes==0.41.2
!pip install safetensors==0.4.5
!pip install accelerate>=0.26.0
!git clone https://github.com/deepseek-ai/DeepSeek-V3.git
cd DeepSeek-V3/inference
!pip install -r requirements.txt
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype="float16",
bnb_4bit_use_double_quant=True
)
model = AutoModelForCausalLM.from_pretrained(
"deepseek-ai/DeepSeek-V3",
quantization_config=quantization_config,
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-V3")
Error I am getting:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[9], line 9
1 from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
3 quantization_config = BitsAndBytesConfig(
4 load_in_4bit=True,
5 bnb_4bit_compute_dtype="float16",
6 bnb_4bit_use_double_quant=True
7 )
----> 9 model = AutoModelForCausalLM.from_pretrained(
10 "deepseek-ai/DeepSeek-V3",
11 quantization_config=quantization_config,
12 device_map="auto",
13 trust_remote_code=True
14 )
16 tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-V3")
File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:559, in _BaseAutoModelClass.from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs)
557 cls.register(config.__class__, model_class, exist_ok=True)
558 model_class = add_generation_mixin_to_remote_model(model_class)
--> 559 return model_class.from_pretrained(
560 pretrained_model_name_or_path, *model_args, config=config, **hub_kwargs, **kwargs
561 )
562 elif type(config) in cls._model_mapping.keys():
563 model_class = _get_model_class(config, cls._model_mapping)
...
100 )
102 target_cls = AUTO_QUANTIZATION_CONFIG_MAPPING[quant_method]
103 return target_cls.from_dict(quantization_config_dict)
ValueError: Unknown quantization type, got fp8 - supported types are: ['awq', 'bitsandbytes_4bit', 'bitsandbytes_8bit', 'gptq', 'aqlm', 'quanto', 'eetq', 'hqq', 'compressed-tensors', 'fbgemm_fp8', 'torchao', 'bitnet']
Could you please help me resolve this issue?