Hi everyone,
I want to fine-tune the AutoModelWithLMHead model from this repository, which is a German GPT-2 model.
I have prepocessed a bunch of text passages for the fine-tuning, but when beginning training, I receive the following error (copied with a little context):
File "GPT\lib\site-packages\torch\nn\modules\module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "GPT\lib\site-packages\transformers\models\gpt2\modeling_gpt2.py", line 774, in forward
raise ValueError("You have to specify either input_ids or inputs_embeds")
ValueError: You have to specify either input_ids or inputs_embeds
It’s asking for either input ids or embeddings, which I thought I provided by instantiating the trainer. Here’s my code for the preparation of the model:
# Load data
with open("Fine-Tuning Dataset/train.txt", "r", encoding="utf-8") as train_file:
train_data = train_file.read().split("--")
with open("Fine-Tuning Dataset/test.txt", "r", encoding="utf-8") as test_file:
test_data = test_file.read().split("--")
# Load pre-trained tokenizer and prepare input
tokenizer = AutoTokenizer.from_pretrained('dbmdz/german-gpt2')
tokenizer.pad_token = tokenizer.eos_token
train_input = tokenizer(train_data, padding="longest")
test_input = tokenizer(test_data, padding="longest")
# Define model
model = AutoModelWithLMHead.from_pretrained("dbmdz/german-gpt2")
training_args = TrainingArguments("test_trainer")
# Evaluation
metric = load_metric("accuracy")
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = numpy.argmax(logits, axis=-1)
return metric.compute(predictions=predictions, references=labels)
# Train
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_input,
eval_dataset=test_input,
compute_metrics=compute_metrics,
)
trainer.train()
trainer.evaluate()
Does anyone know the cause for this? Any help is gladly appreciated! Thank you.