used AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True,
token=token
)
and
bnb_config = BitsAndBytesConfig(
load_in_4bit = True,
bnb_4bit_qunat_type = "nf4",
bnb_4bit_compute_dtype = torch.float16,
)
for loading the model and finetuned this model by using LoRA
peft_config = LoraConfig(
r=16,
lora_alpha=64,
lora_dropout=0.1,
bias="none",
task_type='SEQ_CLS',
)
and saved as “tuned_model”
while loading the model:
from transformers import pipeline
pipe = pipeline('text-classification',
tuned_model,
device_map="auto")
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
[<ipython-input-19-fd1b8ca97698>](https://localhost:8080/#) in <cell line: 2>()
1 from transformers import pipeline
----> 2 pipe = pipeline('text-classification',tuned_model, device_map="auto")
5 frames
[/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py](https://localhost:8080/#) in <dictcomp>(.0)
3809 p: {"safetensors_file": f, "weight_name": p, "dtype": str_dtype}
3810 for p, f in weight_map.items()
-> 3811 if param_device_map[p] == "disk"
3812 }
3813
KeyError: 'lm_head.weight'
Can any one suggest me how to load this tuned_model ?