GLUE-STS Finetune Error

Hi, I’m finetuning “STS-B” task with Google Colab

At the model.fit() part, I encounter the below error

from transformers.keras_callbacks import PushToHubCallback
from tensorflow.keras.callbacks import TensorBoard

model_name = model_checkpoint.split("/")[-1]
push_to_hub_model_id = f"{model_name}-finetuned-{task}"

tensorboard_callback = TensorBoard(log_dir="./text_classification_model_save/logs")

# push_to_hub_callback = PushToHubCallback(
#     output_dir="./text_classification_model_save",
#     tokenizer=tokenizer,
#     hub_model_id=push_to_hub_model_id,
# )

# callbacks = [metric_callback, tensorboard_callback, push_to_hub_callback]
callbacks = [metric_callback, tensorboard_callback]

model.fit(
    tf_train_dataset,
    validation_data=tf_validation_dataset,
    epochs=num_epochs,
    callbacks=callbacks,
)
Epoch 1/3
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
[<ipython-input-28-182e3cf6286a>](https://localhost:8080/#) in <module>
     20     validation_data=tf_validation_dataset,
     21     epochs=num_epochs,
---> 22     callbacks=callbacks,
     23 )

1 frames
[/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py](https://localhost:8080/#) in error_handler(*args, **kwargs)
     65     except Exception as e:  # pylint: disable=broad-except
     66       filtered_tb = _process_traceback_frames(e.__traceback__)
---> 67       raise e.with_traceback(filtered_tb) from None
     68     finally:
     69       del filtered_tb

[/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/func_graph.py](https://localhost:8080/#) in autograph_handler(*args, **kwargs)
   1145           except Exception as e:  # pylint:disable=broad-except
   1146             if hasattr(e, "ag_error_metadata"):
-> 1147               raise e.ag_error_metadata.to_exception(e)
   1148             else:
   1149               raise

ValueError: in user code:

    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1021, in train_function  *
        return step_function(self, iterator)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1010, in step_function  **
        outputs = model.distribute_strategy.run(run_step, args=(data,))
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1000, in run_step  **
        outputs = model.train_step(data)
    File "/usr/local/lib/python3.7/dist-packages/transformers/modeling_tf_utils.py", line 1400, in train_step
        loss = self.compiled_loss(y_pred.loss, y_pred.loss, sample_weight, regularization_losses=self.losses)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/compile_utils.py", line 212, in __call__
        batch_dim = tf.shape(y_t)[0]

    ValueError: slice index 0 of dimension 0 out of bounds. for '{{node strided_slice}} = StridedSlice[Index=DT_INT32, T=DT_INT32, begin_mask=0, ellipsis_mask=0, end_mask=0, new_axis_mask=0, shrink_axis_mask=1](Shape, strided_slice/stack, strided_slice/stack_1, strided_slice/stack_2)' with input shapes: [0], [1], [1], [1] and with computed input tensors: input[1] = <0>, input[2] = <1>, input[3] = <1>.

I can’t find any solution.
This case raise only on me?