How could I define a LogitsProcessorList with multi parameters?

class LogitsProcessorList(list):
“”"
This class can be used to create a list of [LogitsProcessor] or [LogitsWarper] to subsequently process a
scores input tensor. This class inherits from list and adds a specific call method to apply each
[LogitsProcessor] or [LogitsWarper] to the inputs.
“”"

def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.FloatTensor:
    r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
        scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):
            Prediction scores of a language modeling head. These can be logits for each vocabulary when not using
            beam search or log softmax for each vocabulary token when using beam search
        kwargs (`Dict[str, Any]`, *optional*):
            Additional kwargs that are specific to a logits processor.

    Return:
        `torch.FloatTensor` of shape `(batch_size, config.vocab_size)`:
            The processed prediction scores.

    """
    for processor in self:
        function_args = inspect.signature(processor.__call__).parameters
        if len(function_args) > 2:
            if not all(arg in kwargs for arg in list(function_args.keys())[2:]):
                raise ValueError(
                    f"Make sure that all the required parameters: {list(function_args.keys())} for "
                    f"{processor.__class__} are passed to the logits processor."
                )
            **### I want to get here, and How?** 
            scores = processor(input_ids, scores, **kwargs) 
        else:
            scores = processor(input_ids, scores)

    return scores