How to evaluate models

I’ve fine tuned some models from Hugging Face for the QA task using the SQuAD-it dataset. It’s an italian version of SQuAD v1.1, thus it use the same evaluation script. Anyway, I’m new in coding and I really don’t know how to prepare my data to be fed into the evaluation script. I have a test.json file and fine-tuned models. The last step I’ve made is this:

from transformers import TrainingArguments, Trainer


training_args = TrainingArguments(
    output_dir='./results',          # output directory
    num_train_epochs=3,              # total number of training epochs
    per_device_train_batch_size=16,  # batch size per device during training
    per_device_eval_batch_size=16,   # batch size for evaluation
    warmup_steps=500,                # number of warmup steps for learning rate scheduler
    weight_decay=0.01,               # strength of weight decay
    logging_dir='./logs',            # directory for storing logs
    logging_steps=10,
    label_names = ["start_positions", "end_positions"]
)

trainer = Trainer(
    model=model,                         # the instantiated 🤗 Transformers model to be trained
    args=training_args,                  # training arguments, defined above
    train_dataset=train_dataset,         # training dataset
    eval_dataset=val_dataset             # evaluation dataset
)

trainer.train()

The evaluation script is this:

""" Official evaluation script for v1.1 of the SQuAD dataset. """
from __future__ import print_function
from collections import Counter
import string
import re
import argparse
import json
import sys


def normalize_answer(s):
    """Lower text and remove punctuation, articles and extra whitespace."""
    def remove_articles(text):
        return re.sub(r'\b(a|an|the)\b', ' ', text)

    def white_space_fix(text):
        return ' '.join(text.split())

    def remove_punc(text):
        exclude = set(string.punctuation)
        return ''.join(ch for ch in text if ch not in exclude)

    def lower(text):
        return text.lower()

    return white_space_fix(remove_articles(remove_punc(lower(s))))


def f1_score(prediction, ground_truth):
    prediction_tokens = normalize_answer(prediction).split()
    ground_truth_tokens = normalize_answer(ground_truth).split()
    common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
    num_same = sum(common.values())
    if num_same == 0:
        return 0
    precision = 1.0 * num_same / len(prediction_tokens)
    recall = 1.0 * num_same / len(ground_truth_tokens)
    f1 = (2 * precision * recall) / (precision + recall)
    return f1


def exact_match_score(prediction, ground_truth):
    return (normalize_answer(prediction) == normalize_answer(ground_truth))


def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


def evaluate(dataset, predictions):
    f1 = exact_match = total = 0
    for article in dataset:
        for paragraph in article['paragraphs']:
            for qa in paragraph['qas']:
                total += 1
                if qa['id'] not in predictions:
                    message = 'Unanswered question ' + qa['id'] + \
                              ' will receive score 0.'
                    print(message, file=sys.stderr)
                    continue
                ground_truths = list(map(lambda x: x['text'], qa['answers']))
                prediction = predictions[qa['id']]
                exact_match += metric_max_over_ground_truths(
                    exact_match_score, prediction, ground_truths)
                f1 += metric_max_over_ground_truths(
                    f1_score, prediction, ground_truths)

    exact_match = 100.0 * exact_match / total
    f1 = 100.0 * f1 / total

    return {'exact_match': exact_match, 'f1': f1}


if __name__ == '__main__':
    expected_version = '1.1'
    parser = argparse.ArgumentParser(
        description='Evaluation for SQuAD ' + expected_version)
    parser.add_argument('dataset_file', help='Dataset file')
    parser.add_argument('prediction_file', help='Prediction File')
    args = parser.parse_args()
    with open(args.dataset_file) as dataset_file:
        dataset_json = json.load(dataset_file)
        if (dataset_json['version'] != expected_version):
            print('Evaluation expects v-' + expected_version +
                  ', but got dataset with v-' + dataset_json['version'],
                  file=sys.stderr)
        dataset = dataset_json['data']
    with open(args.prediction_file) as prediction_file:
        predictions = json.load(prediction_file)
    print(json.dumps(evaluate(dataset, predictions)))

Thus I think I have to change the ‘dataset_file’ in the script with a dataset from my test.json and to change ‘prediction_file’ with predictions I made with my models. How do I build this last? And must it be another dataset?