For a research, I need to generate samples without decoding, even without transforming the tensors back into ids. I need them in the embedding space and with grad. How can I do this?
I’m using GPT2LMHeadModel, pytorch.
Thanks in advance
For a research, I need to generate samples without decoding, even without transforming the tensors back into ids. I need them in the embedding space and with grad. How can I do this?
I’m using GPT2LMHeadModel, pytorch.
Thanks in advance
Okay I managed to make something based on greedy_search. I’ll greatly appreciate feedbacks. It’s giving output with correct shape but I’m not sure if the values are correct.
def sample_hidden(
self,
input_ids: torch.LongTensor,
logits_processor = None,
stopping_criteria = None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
synced_gpus: Optional[bool] = False,
hidden_state_index=-1,
**model_kwargs,
) :
# init values
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
if max_length is not None:
"""
warnings.warn(
"`max_length` is deprecated in this function, use `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
UserWarning,
)
"""
stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id
# init attention / hidden states / scores tuples
decoder_hidden_states = ()
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
if self.config.is_encoder_decoder:
encoder_hidden_states = model_kwargs["encoder_outputs"].get("hidden_states")
# keep track of which sequences are already finished
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
cur_len = input_ids.shape[-1]
this_peer_finished = False # used by synced_gpus only
first = True
while True:
if synced_gpus:
# Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
# The following logic allows an early break if all peers finished generating their sequence
this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
# send 0.0 if we finished, 1.0 otherwise
dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
# did all peers finish? the reduced sum will be 0.0 then
if this_peer_finished_flag.item() == 0.0:
break
# prepare model inputs
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
# forward pass to get next token
outputs = self(
**model_inputs,
return_dict=True,
output_hidden_states=True,
)
if synced_gpus and this_peer_finished:
cur_len = cur_len + 1
continue # don't waste resources running the code we don't need
next_token_logits = outputs.logits[:, -1, :]
# Store scores, attentions and hidden_states when required
hidden_states = outputs.decoder_hidden_states if self.config.is_encoder_decoder else outputs.hidden_states
if first:
# The model predicts next token
# Therefore there'll only be l-1 hidden states
# Because the first token is not predicted
# Thus we'll use its embedding value
decoder_hidden_states += (hidden_states[0],)
first = False
hidden_states = hidden_states[hidden_state_index]
decoder_hidden_states += (hidden_states,)
# pre-process distribution
next_tokens_scores = logits_processor(input_ids, next_token_logits)
# argmax
next_tokens = torch.argmax(next_tokens_scores, dim=-1)
# finished sentences should have their next token be a padding token
if eos_token_id is not None:
if pad_token_id is None:
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
# update generated ids, model inputs, and length for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
)
cur_len = cur_len + 1
# if eos_token was found in one sentence, set sentence to finished
if eos_token_id is not None:
unfinished_sequences = unfinished_sequences.mul((next_tokens != eos_token_id).long())
# stop when each sentence is finished, or if we exceed the maximum length
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, None):
if not synced_gpus:
break
else:
this_peer_finished = True
decoder_hidden_states = torch.cat(decoder_hidden_states, dim=-2)
return decoder_hidden_states