How can I take a pre-trained AI model from Hugging Face and train it on my own data so it learns my specific task?
Try courses.
I used Claude to generate training code and Kaggle for compute. They give you 30 GPU hours per week for free.
To Fine-tunine a Hugging Face model on your data
-
Pick a base: e.g.,
mistralai/Mistral-7B-Instruct
ormeta-llama/Llama-3.1-8B-Instruct
. On modest GPUs, use LoRA/QLoRA (PEFT + bitsandbytes). -
Format data: for SFT, a simple schema is
{"instruction": "...", "response": "..."}
(train/eval JSONL). -
Train (TRL SFT):
from trl import SFTTrainer, SFTConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import LoraConfig, get_peft_modelname=“mistralai/Mistral-7B-Instruct-v0.3”
tok = AutoTokenizer.from_pretrained(name)
model = AutoModelForCausalLM.from_pretrained(name, device_map=“auto”)
model = get_peft_model(model, LoraConfig(r=16, lora_alpha=32, target_modules=[“q_proj”,“v_proj”]))
cfg=SFTConfig(output_dir=“./out”, per_device_train_batch_size=4, num_train_epochs=2)
trainer=SFTTrainer(model=model, tokenizer=tok, train_dataset=train_ds, eval_dataset=eval_ds, dataset_text_field=“text”, args=cfg)
trainer.train(); trainer.save_model(“./out/final”)
You can do the same faster with RapidFire AI (if you want speed + control):
Launch many configs in parallel (models, LR, LoRA ranks), and stop / resume / clone-modify / warm-start runs mid-training with a built-in dashboard (MLflow under the hood).
Minimal flow:
pip install rapidfireai
rapidfireai init && rapidfireai start
from rapidfireai import Experiment
# define a few RFModelConfig variants (different models/LR/LoRA); then:
Experiment("my-exp").run_fit(config_group, create_model, train_ds, eval_ds, num_chunks=4)
Use this method, when you’re exploring to find the best setup quickly or iterating live under tight GPU budgets.
Disclosure: I work for RapidFire AI.