Yes, you are correct, I’m trying to work on a named entity recognition task. So what I was hoping to achieve was to be able to do something like below:
Dict = {'train': {'id': np.arange(len(train_texts)),
'tokens': train_texts,
'ner_tags': train_tags(
datasets.features.ClassLabel(
names=['B-ORG', 'I-ORG', 'O', 'I-EVENT', 'I-PERSON', 'B-PERSON']
)
)
},
'val': {'id': np.arange(len(train_texts)),
'tokens': train_texts,
'ner_tags': train_tags(
datasets.features.ClassLabel(
names=['B-ORG', 'I-ORG', 'O', 'I-EVENT', 'I-PERSON', 'B-PERSON']
)
)
},
'test': {'id': np.arange(len(train_texts)),
'tokens': train_texts,
'ner_tags': train_tags(
datasets.features.ClassLabel(
names=['B-ORG', 'I-ORG', 'O', 'I-EVENT', 'I-PERSON', 'B-PERSON']
)
)
}
}
Specifically, to include the specification of the ClassLabel in the python dictionary statement. Doing it that way does not work because it gives a 'list object is not callable error`. Is there a way to work around that?