IndexError when instantiating SFTTrainer()

Hi, I am new to NLP and I have been following a tutorial to fine tune Llama2. I was following the steps and it worked well, but I encountered an IndexError when i try to instantiate SFTTrainer() to train my model. Before I ran into the error, this is what I did in the beginning:

# import libraries
import json
import re
from pprint import pprint

import pandas as pd
import torch
from datasets import Dataset, load_dataset
from huggingface_hub import notebook_login
from peft import LoraConfig, PeftModel
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    TrainingArguments
)
from trl import SFTTrainer

DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
MODEL_NAME = "meta-llama/Llama-2-7b-hf"

# import dataset
dataset = load_dataset("Salesforce/dialogstudio", "Empathetic")
dataset

# prompt instructions
DEFAULT_SYSTEM_PROMPT = """
Below is a conversation between 2 users. Explain the feeling that the users felt during this conversation in 1 word.
""".strip()

def generate_training_prompt(
    conversations: str, feeling: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT
) -> str:
    return f"""### Instruction: {system_prompt}

### Input:
{conversations.strip()}

### Response:
{feeling}
""".strip()

# clean text
def clean_text(text):
    text = re.sub(r"http\S+", "", text)
    text = re.sub(r"@[^\s]+", "", text)
    text = re.sub(r"\s+", " ", text)
    return re.sub(r"\^[^ ]+", "", text)

def create_conversation_text(data_points):
    text = ""
    for item in data_points["log"]:
        user1 = clean_text(item["user utterance"])
        text += f"user1: {user1.strip()}\n"
        
        user2 = clean_text(item["system response"])
        text += f"user2: {user2.strip()}\n"
        
    return text
    
# generate text
def generate_text(data_point):
    feeling = json.loads(data_point["original dialog info"])["context"]
    
    conversation_text = create_conversation_text(data_point)
    return {
        "conversation": conversation_text,
        "feeling": feeling,
        "text": generate_training_prompt(conversation_text, feeling)
    }

example = generate_text(dataset["train"][1])
print(example["feeling"])
print(example["conversation"])
print(example["text"])

# process dataset
def process_dataset(data: Dataset):
    return (
        data.shuffle(seed = 333)
        .map(generate_text)
        .remove_columns(
            [
                "original dialog id",
                "new dialog id",
                "dialog index",
                "original dialog info",
                "log",
                "prompt"
            ]
        )
    )

dataset["train"] = process_dataset(dataset["train"])
dataset["validation"] = process_dataset(dataset["validation"])
dataset["test"] = process_dataset(dataset["test"])

dataset

# log in to HF
!huggingface-cli login --token "redacted"

# create model and tokenizer
def create_model_and_tokenizer():
    bnb_config = BitsAndBytesConfig(
        bnb_4bit_compute_dtype=torch.float16,
        llm_int8_enable_fp32_cpu_offload=True
    )
    
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_NAME,
        use_safetensors=True,
        quantization_config=bnb_config,
        trust_remote_code=True,
        device_map="auto"
    )
    
    tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
    tokenizer.pad_token = tokenizer.eos_token
    tokenizer.padding_side = "right"
    
    return model, tokenizer

model, tokenizer = create_model_and_tokenizer()
model.config.use_cache = False

lora_alpha = 32
lora_dropout = 0.05
lora_r = 16
lora_target_modules = [
    "q_proj",
    "up_proj",
    "o_proj",
    "k_proj",
    "down_proj",
    "gate_proj",
    "v_proj",
]

peft_config = LoraConfig(
    lora_alpha=lora_alpha,
    lora_dropout=lora_dropout,
    r=lora_r,
    target_modules=lora_target_modules,
    bias="none",
    task_type="CAUSAL_LM"
)

OUTPUT_DIR = "experiments"

%load_ext tensorboard
%tensorboard --logdir experiments/run

training_arguments = TrainingArguments(
    per_device_train_batch_size=4,
    gradient_accumulation_steps=4,
    optim="paged_adamw_32bit",
    logging_steps=1,
    learning_rate=0.0001,
#    fp16=True,
    max_grad_norm=0.3,
    num_train_epochs=2,
    evaluation_strategy="steps",
    eval_steps=0.2,
    warmup_ratio=0.05,
    save_strategy="epoch",
    group_by_length=True,
    output_dir=OUTPUT_DIR,
    report_to="tensorboard",
    save_safetensors=True,
    lr_scheduler_type="cosine",
    seed=333
)

After running the above successfully, running this next chunk of code to instantiate the SFTTrainer gives me an IndexError:

trainer = SFTTrainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
    peft_config=peft_config,
    dataset_text_field="text",
    max_seq_length=4096,
    tokenizer=tokenizer,
    args=training_arguments
)
--------------------------------------------------------------------------- IndexError Traceback (most recent call last) Cell In[2], line 1 ----> 1 trainer = SFTTrainer( 2 model=model, 3 train_dataset=dataset["train"], 4 eval_dataset=dataset["validation"], 5 peft_config=peft_config, 6 dataset_text_field="text", 7 max_seq_length=4096, 8 tokenizer=tokenizer, 9 args=training_arguments 10 ) File [c:\Users\wl\AppData\Local\Programs\Python\Python311\Lib\site-packages\trl\trainer\sft_trainer.py:219](file:///C:/Users/wl/AppData/Local/Programs/Python/Python311/Lib/site-packages/trl/trainer/sft_trainer.py:219), in SFTTrainer.__init__(self, model, args, data_collator, train_dataset, eval_dataset, tokenizer, model_init, compute_metrics, callbacks, optimizers, preprocess_logits_for_metrics, peft_config, dataset_text_field, packing, formatting_func, max_seq_length, infinite, num_of_sequences, chars_per_token, dataset_num_proc, dataset_batch_size) [213](file:///c%3A/Users/wl/AppData/Local/Programs/Python/Python311/Lib/site-packages/trl/trainer/sft_trainer.py?line=212) if tokenizer.padding_side is not None and tokenizer.padding_side != "right": [214](file:///c%3A/Users/wl/AppData/Local/Programs/Python/Python311/Lib/site-packages/trl/trainer/sft_trainer.py?line=213) warnings.warn( [215](file:///c%3A/Users/wl/AppData/Local/Programs/Python/Python311/Lib/site-packages/trl/trainer/sft_trainer.py?line=214) "You passed a tokenizer with `padding_side` not equal to `right` to the SFTTrainer. This might lead to some unexpected behaviour due to " [216](file:///c%3A/Users/wl/AppData/Local/Programs/Python/Python311/Lib/site-packages/trl/trainer/sft_trainer.py?line=215) "overflow issues when training a model in half-precision. You might consider adding `tokenizer.padding_side = 'right'` to your code." [217](file:///c%3A/Users/wl/AppData/Local/Programs/Python/Python311/Lib/site-packages/trl/trainer/sft_trainer.py?line=216) ) --> [219](file:///c%3A/Users/wl/AppData/Local/Programs/Python/Python311/Lib/site-packages/trl/trainer/sft_trainer.py?line=218) super().__init__( [220](file:///c%3A/Users/wl/AppData/Local/Programs/Python/Python311/Lib/site-packages/trl/trainer/sft_trainer.py?line=219) model=model, [221](file:///c%3A/Users/wl/AppData/Local/Programs/Python/Python311/Lib/site-packages/trl/trainer/sft_trainer.py?line=220) args=args, [222](file:///c%3A/Users/wl/AppData/Local/Programs/Python/Python311/Lib/site-packages/trl/trainer/sft_trainer.py?line=221) data_collator=data_collator, [223](file:///c%3A/Users/wl/AppData/Local/Programs/Python/Python311/Lib/site-packages/trl/trainer/sft_trainer.py?line=222) train_dataset=train_dataset,

...

[400](file:///c%3A/Users/wl/AppData/Local/Programs/Python/Python311/Lib/site-packages/transformers/trainer.py?line=399) "You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set" [401](file:///c%3A/Users/wl/AppData/Local/Programs/Python/Python311/Lib/site-packages/transformers/trainer.py?line=400) " to `True` to avoid any unexpected behavior such as device placement mismatching." [402](file:///c%3A/Users/wl/AppData/Local/Programs/Python/Python311/Lib/site-packages/transformers/trainer.py?line=401) ) IndexError: list index out of range

Output is truncated. View as a [scrollable element](command:cellOutput.enableScrolling?f80cd8a1-e6c5-4e39-ba7e-fd3bf680aa55) or open in a [text editor](command:workbench.action.openLargeOutput?f80cd8a1-e6c5-4e39-ba7e-fd3bf680aa55). Adjust cell output [settings](command:workbench.action.openSettings?%5B%22%40tag%3AnotebookOutputLayout%22%5D)...

I have checked through my datasets and formattings but I am still not able to find anything that is causing this error. Would love it if anyone has an idea why this is happening.