I want to use an instant ID pipeline with another Ipadapter on SDXL.
I got :
import diffusers
from diffusers.utils import load_image
from diffusers.models import ControlNetModel
from transformers import CLIPVisionModelWithProjection
# Custom diffusers implementation Instantid & insightface
from insightface.app import FaceAnalysis
from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps
# Other dependencies
import cv2
import torch
import numpy as np
from PIL import Image
from compel import Compel, ReturnedEmbeddingsType
app_face = FaceAnalysis(name='antelopev2', root='./', providers=['CPUExecutionProvider', 'CPUExecutionProvider']) #CUDAExecutionProvider
app_face.prepare(ctx_id=0, det_size=(640, 640))
# prepare models under ./checkpoints
face_adapter = "./models/instantid/ip-adapter.bin"
controlnet_path = "./models/instantid/ControlNetModel/"
# load IdentityNet
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
pipe = StableDiffusionXLInstantIDPipeline.from_single_file(
"./models/checkpoints/realvisxlV40_v40LightningBakedvae.safetensors",
controlnet=controlnet, torch_dtype=torch.float16
)
pipe.cuda()
# load adapter
pipe.load_ip_adapter_instantid(face_adapter)
# Load ipadapter
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"./models/ipadapters",
subfolder="sdxl_models/image_encoder",
torch_dtype=torch.float16,
#weight_name="ip-adapter-plus_sdxl_vit-h.safetensors"
).to("cuda")
# Apply adapter to pipe
pipe.image_encoder = image_encoder
pipe.load_ip_adapter("./models/ipadapters", subfolder="sdxl_models", weight_name="ip-adapter-plus_sdxl_vit-h.safetensors")
pipe.set_ip_adapter_scale(1.3)
# Optimisation
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
image = Image.open("img1.png")
face_info = app_face.get(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
face_emb = face_info['embedding']
prompt = "prompt"
kps = Image.open("kps_standard.png")
ipadapter_image = Image.open("img2.png")
#encod = pipe.image_encoder(ipadapter_image)
prompt_embed, pooled = compel_proc(prompt)
image = pipe(
prompt,
width=768,
height=1024,
image_embeds=face_emb,
image=kps,
seed=42,
ip_adapter_image=ipadapter_image,
controlnet_conditioning_scale=0.7,
control_guidance_end = .7,
num_inference_steps=6,
guidance_scale=3,
).images[0]
And got :
ValueError: <class 'diffusers.models.unet_2d_condition.UNet2DConditionModel'> has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`
Is there any workaround ?
I tried adding argument to the pipe
added_conditions="image_embeds", # first test
added_cond_kwargs = { # second one
"image_embeds" : face_emb
},
Also I tried to pre-encode the image :
prompt_image_emb = pipe._encode_prompt_image_emb(
face_emb,
"cuda",
num_images_per_prompt = 1,
dtype=torch.float16,
do_classifier_free_guidance=False
)
then :
image = pipe( ..., encoder_hidden_states= encoder_hidden_states, ...
And it still give me this error.
If anyone has a clue about that
Thanks in advance,