I use the model: https://huggingface.co/taide/TAIDE-LX-7B-Chat to fine-tune, bu…t always got the error. training is OK, but model.save_pretrained_gguf failed.
==((====))== Unsloth: Fast Llama patching release 2024.4
\\ /| GPU: NVIDIA GeForce RTX 3090. Max memory: 23.691 GB. Platform = Linux.
O^O/ \_/ \ Pytorch: 2.2.2+cu121. CUDA = 8.6. CUDA Toolkit = 12.1.
\ / Bfloat16 = TRUE. Xformers = 0.0.25.post1. FA = False.
"-____-" Free Apache license: http://github.com/unslothai/unsloth
Loading checkpoint shards: 100%|████████████████████████████████████████████████████████| 3/3 [00:03<00:00, 1.02s/it]
You set `add_prefix_space`. The tokenizer needs to be converted from the slow tokenizers
Unsloth 2024.4 patched 32 layers with 32 QKV layers, 32 O layers and 32 MLP layers.
Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.
['<s>Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n\n\n### Input:\n上上禮拜持續出現頭痛、噁心、頭暈的症狀,有時睡一下起來還是沒有緩解,大概都痛在太陽穴上面一點,有時痛在頭腦勺(較少),躺著起來頭暈頻率越來越高(本身有貧血,但近期只要姿勢一轉換就會頭暈眼前接近黑色),容易疲累,想問一下這些症狀有需要到醫院去檢查嗎?\n\n### Response:\n\n您好:\n根據您的描述,您可能有以下幾種可能的原因:\n1. 貧血:貧血是常見的問題,若沒有定期檢查,可能會導致頭暈、頭痛、疲累等症狀。\n2. 內耳問題:內耳有平衡器官,若內耳有問題,可能會導致頭暈、頭痛、噁心等症狀。\n3. 其他疾病:如甲狀腺疾病、心臟疾病、糖尿病、高血壓等,都可能會引起頭暈、頭痛、噁心等症狀。\n建議您前往醫院,讓醫師為您做詳細的檢查,以確定病因,並接受適當的治療。\n祝健康! </s>']
Unsloth: Merging 4bit and LoRA weights to 16bit...
Unsloth: Will use up to 46.9 out of 62.57 RAM for saving.
100%|█████████████████████████████████████████████████████████████████████████████████| 32/32 [00:00<00:00, 90.79it/s]
Unsloth: Saving tokenizer... Done.
Unsloth: Saving model... This might take 5 minutes for Llama-7b...
Done.
Unsloth: Converting llama model. Can use fast conversion = True.
==((====))== Unsloth: Conversion from QLoRA to GGUF information
\\ /| [0] Installing llama.cpp will take 3 minutes.
O^O/ \_/ \ [1] Converting HF to GUUF 16bits will take 3 minutes.
\ / [2] Converting GGUF 16bits to q4_k_m will take 20 minutes.
"-____-" In total, you will have to wait around 26 minutes.
Unsloth: [0] Installing llama.cpp. This will take 3 minutes...
Unsloth: [1] Converting model at ch_taide_medicine.gguf into f16 GGUF format.
The output location will be ./ch_taide_medicine.gguf-unsloth.F16.gguf
This will take 3 minutes...
Loading model file ch_taide_medicine.gguf/model-00001-of-00003.safetensors
Loading model file ch_taide_medicine.gguf/model-00001-of-00003.safetensors
Loading model file ch_taide_medicine.gguf/model-00002-of-00003.safetensors
Loading model file ch_taide_medicine.gguf/model-00003-of-00003.safetensors
params = Params(n_vocab=56064, n_embd=4096, n_layer=32, n_ctx=4096, n_ff=11008, n_head=32, n_head_kv=32, n_experts=None, n_experts_used=None, f_norm_eps=1e-05, rope_scaling_type=None, f_rope_freq_base=10000.0, f_rope_scale=None, n_orig_ctx=None, rope_finetuned=None, ftype=<GGMLFileType.MostlyF16: 1>, path_model=PosixPath('ch_taide_medicine.gguf'))
Loaded vocab file PosixPath('ch_taide_medicine.gguf/tokenizer.json'), type 'hfft'
Vocab info: <LlamaHfVocab with 56020 base tokens and 0 added tokens>
Special vocab info: <SpecialVocab with 0 merges, special tokens {'bos': 1, 'eos': 2, 'unk': 0, 'pad': 32000}, add special tokens {'bos': True, 'eos': False}>
Permuting layer 0
Permuting layer 1
Permuting layer 2
Permuting layer 3
Permuting layer 4
Permuting layer 5
Permuting layer 6
Permuting layer 7
Permuting layer 8
Permuting layer 9
Permuting layer 10
Permuting layer 11
Permuting layer 12
Permuting layer 13
Permuting layer 14
Permuting layer 15
Permuting layer 16
Permuting layer 17
Permuting layer 18
Permuting layer 19
Permuting layer 20
Permuting layer 21
Permuting layer 22
Permuting layer 23
Permuting layer 24
Permuting layer 25
Permuting layer 26
Permuting layer 27
Permuting layer 28
Permuting layer 29
Permuting layer 30
Permuting layer 31
model.embed_tokens.weight -> token_embd.weight | BF16 | [56064, 4096]
model.layers.0.input_layernorm.weight -> blk.0.attn_norm.weight | BF16 | [4096]
model.layers.0.mlp.down_proj.weight -> blk.0.ffn_down.weight | BF16 | [4096, 11008]
model.layers.0.mlp.gate_proj.weight -> blk.0.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.0.mlp.up_proj.weight -> blk.0.ffn_up.weight | BF16 | [11008, 4096]
model.layers.0.post_attention_layernorm.weight -> blk.0.ffn_norm.weight | BF16 | [4096]
model.layers.0.self_attn.k_proj.weight -> blk.0.attn_k.weight | BF16 | [4096, 4096]
model.layers.0.self_attn.o_proj.weight -> blk.0.attn_output.weight | BF16 | [4096, 4096]
model.layers.0.self_attn.q_proj.weight -> blk.0.attn_q.weight | BF16 | [4096, 4096]
model.layers.0.self_attn.v_proj.weight -> blk.0.attn_v.weight | BF16 | [4096, 4096]
model.layers.1.input_layernorm.weight -> blk.1.attn_norm.weight | BF16 | [4096]
model.layers.1.mlp.down_proj.weight -> blk.1.ffn_down.weight | BF16 | [4096, 11008]
model.layers.1.mlp.gate_proj.weight -> blk.1.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.1.mlp.up_proj.weight -> blk.1.ffn_up.weight | BF16 | [11008, 4096]
model.layers.1.post_attention_layernorm.weight -> blk.1.ffn_norm.weight | BF16 | [4096]
model.layers.1.self_attn.k_proj.weight -> blk.1.attn_k.weight | BF16 | [4096, 4096]
model.layers.1.self_attn.o_proj.weight -> blk.1.attn_output.weight | BF16 | [4096, 4096]
model.layers.1.self_attn.q_proj.weight -> blk.1.attn_q.weight | BF16 | [4096, 4096]
model.layers.1.self_attn.v_proj.weight -> blk.1.attn_v.weight | BF16 | [4096, 4096]
model.layers.10.input_layernorm.weight -> blk.10.attn_norm.weight | BF16 | [4096]
model.layers.10.mlp.down_proj.weight -> blk.10.ffn_down.weight | BF16 | [4096, 11008]
model.layers.10.mlp.gate_proj.weight -> blk.10.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.10.mlp.up_proj.weight -> blk.10.ffn_up.weight | BF16 | [11008, 4096]
model.layers.10.post_attention_layernorm.weight -> blk.10.ffn_norm.weight | BF16 | [4096]
model.layers.10.self_attn.k_proj.weight -> blk.10.attn_k.weight | BF16 | [4096, 4096]
model.layers.10.self_attn.o_proj.weight -> blk.10.attn_output.weight | BF16 | [4096, 4096]
model.layers.10.self_attn.q_proj.weight -> blk.10.attn_q.weight | BF16 | [4096, 4096]
model.layers.10.self_attn.v_proj.weight -> blk.10.attn_v.weight | BF16 | [4096, 4096]
model.layers.11.self_attn.k_proj.weight -> blk.11.attn_k.weight | BF16 | [4096, 4096]
model.layers.11.self_attn.q_proj.weight -> blk.11.attn_q.weight | BF16 | [4096, 4096]
model.layers.2.input_layernorm.weight -> blk.2.attn_norm.weight | BF16 | [4096]
model.layers.2.mlp.down_proj.weight -> blk.2.ffn_down.weight | BF16 | [4096, 11008]
model.layers.2.mlp.gate_proj.weight -> blk.2.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.2.mlp.up_proj.weight -> blk.2.ffn_up.weight | BF16 | [11008, 4096]
model.layers.2.post_attention_layernorm.weight -> blk.2.ffn_norm.weight | BF16 | [4096]
model.layers.2.self_attn.k_proj.weight -> blk.2.attn_k.weight | BF16 | [4096, 4096]
model.layers.2.self_attn.o_proj.weight -> blk.2.attn_output.weight | BF16 | [4096, 4096]
model.layers.2.self_attn.q_proj.weight -> blk.2.attn_q.weight | BF16 | [4096, 4096]
model.layers.2.self_attn.v_proj.weight -> blk.2.attn_v.weight | BF16 | [4096, 4096]
model.layers.3.input_layernorm.weight -> blk.3.attn_norm.weight | BF16 | [4096]
model.layers.3.mlp.down_proj.weight -> blk.3.ffn_down.weight | BF16 | [4096, 11008]
model.layers.3.mlp.gate_proj.weight -> blk.3.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.3.mlp.up_proj.weight -> blk.3.ffn_up.weight | BF16 | [11008, 4096]
model.layers.3.post_attention_layernorm.weight -> blk.3.ffn_norm.weight | BF16 | [4096]
model.layers.3.self_attn.k_proj.weight -> blk.3.attn_k.weight | BF16 | [4096, 4096]
model.layers.3.self_attn.o_proj.weight -> blk.3.attn_output.weight | BF16 | [4096, 4096]
model.layers.3.self_attn.q_proj.weight -> blk.3.attn_q.weight | BF16 | [4096, 4096]
model.layers.3.self_attn.v_proj.weight -> blk.3.attn_v.weight | BF16 | [4096, 4096]
model.layers.4.input_layernorm.weight -> blk.4.attn_norm.weight | BF16 | [4096]
model.layers.4.mlp.down_proj.weight -> blk.4.ffn_down.weight | BF16 | [4096, 11008]
model.layers.4.mlp.gate_proj.weight -> blk.4.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.4.mlp.up_proj.weight -> blk.4.ffn_up.weight | BF16 | [11008, 4096]
model.layers.4.post_attention_layernorm.weight -> blk.4.ffn_norm.weight | BF16 | [4096]
model.layers.4.self_attn.k_proj.weight -> blk.4.attn_k.weight | BF16 | [4096, 4096]
model.layers.4.self_attn.o_proj.weight -> blk.4.attn_output.weight | BF16 | [4096, 4096]
model.layers.4.self_attn.q_proj.weight -> blk.4.attn_q.weight | BF16 | [4096, 4096]
model.layers.4.self_attn.v_proj.weight -> blk.4.attn_v.weight | BF16 | [4096, 4096]
model.layers.5.input_layernorm.weight -> blk.5.attn_norm.weight | BF16 | [4096]
model.layers.5.mlp.down_proj.weight -> blk.5.ffn_down.weight | BF16 | [4096, 11008]
model.layers.5.mlp.gate_proj.weight -> blk.5.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.5.mlp.up_proj.weight -> blk.5.ffn_up.weight | BF16 | [11008, 4096]
model.layers.5.post_attention_layernorm.weight -> blk.5.ffn_norm.weight | BF16 | [4096]
model.layers.5.self_attn.k_proj.weight -> blk.5.attn_k.weight | BF16 | [4096, 4096]
model.layers.5.self_attn.o_proj.weight -> blk.5.attn_output.weight | BF16 | [4096, 4096]
model.layers.5.self_attn.q_proj.weight -> blk.5.attn_q.weight | BF16 | [4096, 4096]
model.layers.5.self_attn.v_proj.weight -> blk.5.attn_v.weight | BF16 | [4096, 4096]
model.layers.6.input_layernorm.weight -> blk.6.attn_norm.weight | BF16 | [4096]
model.layers.6.mlp.down_proj.weight -> blk.6.ffn_down.weight | BF16 | [4096, 11008]
model.layers.6.mlp.gate_proj.weight -> blk.6.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.6.mlp.up_proj.weight -> blk.6.ffn_up.weight | BF16 | [11008, 4096]
model.layers.6.post_attention_layernorm.weight -> blk.6.ffn_norm.weight | BF16 | [4096]
model.layers.6.self_attn.k_proj.weight -> blk.6.attn_k.weight | BF16 | [4096, 4096]
model.layers.6.self_attn.o_proj.weight -> blk.6.attn_output.weight | BF16 | [4096, 4096]
model.layers.6.self_attn.q_proj.weight -> blk.6.attn_q.weight | BF16 | [4096, 4096]
model.layers.6.self_attn.v_proj.weight -> blk.6.attn_v.weight | BF16 | [4096, 4096]
model.layers.7.input_layernorm.weight -> blk.7.attn_norm.weight | BF16 | [4096]
model.layers.7.mlp.down_proj.weight -> blk.7.ffn_down.weight | BF16 | [4096, 11008]
model.layers.7.mlp.gate_proj.weight -> blk.7.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.7.mlp.up_proj.weight -> blk.7.ffn_up.weight | BF16 | [11008, 4096]
model.layers.7.post_attention_layernorm.weight -> blk.7.ffn_norm.weight | BF16 | [4096]
model.layers.7.self_attn.k_proj.weight -> blk.7.attn_k.weight | BF16 | [4096, 4096]
model.layers.7.self_attn.o_proj.weight -> blk.7.attn_output.weight | BF16 | [4096, 4096]
model.layers.7.self_attn.q_proj.weight -> blk.7.attn_q.weight | BF16 | [4096, 4096]
model.layers.7.self_attn.v_proj.weight -> blk.7.attn_v.weight | BF16 | [4096, 4096]
model.layers.8.input_layernorm.weight -> blk.8.attn_norm.weight | BF16 | [4096]
model.layers.8.mlp.down_proj.weight -> blk.8.ffn_down.weight | BF16 | [4096, 11008]
model.layers.8.mlp.gate_proj.weight -> blk.8.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.8.mlp.up_proj.weight -> blk.8.ffn_up.weight | BF16 | [11008, 4096]
model.layers.8.post_attention_layernorm.weight -> blk.8.ffn_norm.weight | BF16 | [4096]
model.layers.8.self_attn.k_proj.weight -> blk.8.attn_k.weight | BF16 | [4096, 4096]
model.layers.8.self_attn.o_proj.weight -> blk.8.attn_output.weight | BF16 | [4096, 4096]
model.layers.8.self_attn.q_proj.weight -> blk.8.attn_q.weight | BF16 | [4096, 4096]
model.layers.8.self_attn.v_proj.weight -> blk.8.attn_v.weight | BF16 | [4096, 4096]
model.layers.9.input_layernorm.weight -> blk.9.attn_norm.weight | BF16 | [4096]
model.layers.9.mlp.down_proj.weight -> blk.9.ffn_down.weight | BF16 | [4096, 11008]
model.layers.9.mlp.gate_proj.weight -> blk.9.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.9.mlp.up_proj.weight -> blk.9.ffn_up.weight | BF16 | [11008, 4096]
model.layers.9.post_attention_layernorm.weight -> blk.9.ffn_norm.weight | BF16 | [4096]
model.layers.9.self_attn.k_proj.weight -> blk.9.attn_k.weight | BF16 | [4096, 4096]
model.layers.9.self_attn.o_proj.weight -> blk.9.attn_output.weight | BF16 | [4096, 4096]
model.layers.9.self_attn.q_proj.weight -> blk.9.attn_q.weight | BF16 | [4096, 4096]
model.layers.9.self_attn.v_proj.weight -> blk.9.attn_v.weight | BF16 | [4096, 4096]
model.layers.11.input_layernorm.weight -> blk.11.attn_norm.weight | BF16 | [4096]
model.layers.11.mlp.down_proj.weight -> blk.11.ffn_down.weight | BF16 | [4096, 11008]
model.layers.11.mlp.gate_proj.weight -> blk.11.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.11.mlp.up_proj.weight -> blk.11.ffn_up.weight | BF16 | [11008, 4096]
model.layers.11.post_attention_layernorm.weight -> blk.11.ffn_norm.weight | BF16 | [4096]
model.layers.11.self_attn.o_proj.weight -> blk.11.attn_output.weight | BF16 | [4096, 4096]
model.layers.11.self_attn.v_proj.weight -> blk.11.attn_v.weight | BF16 | [4096, 4096]
model.layers.12.input_layernorm.weight -> blk.12.attn_norm.weight | BF16 | [4096]
model.layers.12.mlp.down_proj.weight -> blk.12.ffn_down.weight | BF16 | [4096, 11008]
model.layers.12.mlp.gate_proj.weight -> blk.12.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.12.mlp.up_proj.weight -> blk.12.ffn_up.weight | BF16 | [11008, 4096]
model.layers.12.post_attention_layernorm.weight -> blk.12.ffn_norm.weight | BF16 | [4096]
model.layers.12.self_attn.k_proj.weight -> blk.12.attn_k.weight | BF16 | [4096, 4096]
model.layers.12.self_attn.o_proj.weight -> blk.12.attn_output.weight | BF16 | [4096, 4096]
model.layers.12.self_attn.q_proj.weight -> blk.12.attn_q.weight | BF16 | [4096, 4096]
model.layers.12.self_attn.v_proj.weight -> blk.12.attn_v.weight | BF16 | [4096, 4096]
model.layers.13.input_layernorm.weight -> blk.13.attn_norm.weight | BF16 | [4096]
model.layers.13.mlp.down_proj.weight -> blk.13.ffn_down.weight | BF16 | [4096, 11008]
model.layers.13.mlp.gate_proj.weight -> blk.13.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.13.mlp.up_proj.weight -> blk.13.ffn_up.weight | BF16 | [11008, 4096]
model.layers.13.post_attention_layernorm.weight -> blk.13.ffn_norm.weight | BF16 | [4096]
model.layers.13.self_attn.k_proj.weight -> blk.13.attn_k.weight | BF16 | [4096, 4096]
model.layers.13.self_attn.o_proj.weight -> blk.13.attn_output.weight | BF16 | [4096, 4096]
model.layers.13.self_attn.q_proj.weight -> blk.13.attn_q.weight | BF16 | [4096, 4096]
model.layers.13.self_attn.v_proj.weight -> blk.13.attn_v.weight | BF16 | [4096, 4096]
model.layers.14.input_layernorm.weight -> blk.14.attn_norm.weight | BF16 | [4096]
model.layers.14.mlp.down_proj.weight -> blk.14.ffn_down.weight | BF16 | [4096, 11008]
model.layers.14.mlp.gate_proj.weight -> blk.14.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.14.mlp.up_proj.weight -> blk.14.ffn_up.weight | BF16 | [11008, 4096]
model.layers.14.post_attention_layernorm.weight -> blk.14.ffn_norm.weight | BF16 | [4096]
model.layers.14.self_attn.k_proj.weight -> blk.14.attn_k.weight | BF16 | [4096, 4096]
model.layers.14.self_attn.o_proj.weight -> blk.14.attn_output.weight | BF16 | [4096, 4096]
model.layers.14.self_attn.q_proj.weight -> blk.14.attn_q.weight | BF16 | [4096, 4096]
model.layers.14.self_attn.v_proj.weight -> blk.14.attn_v.weight | BF16 | [4096, 4096]
model.layers.15.input_layernorm.weight -> blk.15.attn_norm.weight | BF16 | [4096]
model.layers.15.mlp.down_proj.weight -> blk.15.ffn_down.weight | BF16 | [4096, 11008]
model.layers.15.mlp.gate_proj.weight -> blk.15.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.15.mlp.up_proj.weight -> blk.15.ffn_up.weight | BF16 | [11008, 4096]
model.layers.15.post_attention_layernorm.weight -> blk.15.ffn_norm.weight | BF16 | [4096]
model.layers.15.self_attn.k_proj.weight -> blk.15.attn_k.weight | BF16 | [4096, 4096]
model.layers.15.self_attn.o_proj.weight -> blk.15.attn_output.weight | BF16 | [4096, 4096]
model.layers.15.self_attn.q_proj.weight -> blk.15.attn_q.weight | BF16 | [4096, 4096]
model.layers.15.self_attn.v_proj.weight -> blk.15.attn_v.weight | BF16 | [4096, 4096]
model.layers.16.input_layernorm.weight -> blk.16.attn_norm.weight | BF16 | [4096]
model.layers.16.mlp.down_proj.weight -> blk.16.ffn_down.weight | BF16 | [4096, 11008]
model.layers.16.mlp.gate_proj.weight -> blk.16.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.16.mlp.up_proj.weight -> blk.16.ffn_up.weight | BF16 | [11008, 4096]
model.layers.16.post_attention_layernorm.weight -> blk.16.ffn_norm.weight | BF16 | [4096]
model.layers.16.self_attn.k_proj.weight -> blk.16.attn_k.weight | BF16 | [4096, 4096]
model.layers.16.self_attn.o_proj.weight -> blk.16.attn_output.weight | BF16 | [4096, 4096]
model.layers.16.self_attn.q_proj.weight -> blk.16.attn_q.weight | BF16 | [4096, 4096]
model.layers.16.self_attn.v_proj.weight -> blk.16.attn_v.weight | BF16 | [4096, 4096]
model.layers.17.input_layernorm.weight -> blk.17.attn_norm.weight | BF16 | [4096]
model.layers.17.mlp.down_proj.weight -> blk.17.ffn_down.weight | BF16 | [4096, 11008]
model.layers.17.mlp.gate_proj.weight -> blk.17.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.17.mlp.up_proj.weight -> blk.17.ffn_up.weight | BF16 | [11008, 4096]
model.layers.17.post_attention_layernorm.weight -> blk.17.ffn_norm.weight | BF16 | [4096]
model.layers.17.self_attn.k_proj.weight -> blk.17.attn_k.weight | BF16 | [4096, 4096]
model.layers.17.self_attn.o_proj.weight -> blk.17.attn_output.weight | BF16 | [4096, 4096]
model.layers.17.self_attn.q_proj.weight -> blk.17.attn_q.weight | BF16 | [4096, 4096]
model.layers.17.self_attn.v_proj.weight -> blk.17.attn_v.weight | BF16 | [4096, 4096]
model.layers.18.input_layernorm.weight -> blk.18.attn_norm.weight | BF16 | [4096]
model.layers.18.mlp.down_proj.weight -> blk.18.ffn_down.weight | BF16 | [4096, 11008]
model.layers.18.mlp.gate_proj.weight -> blk.18.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.18.mlp.up_proj.weight -> blk.18.ffn_up.weight | BF16 | [11008, 4096]
model.layers.18.post_attention_layernorm.weight -> blk.18.ffn_norm.weight | BF16 | [4096]
model.layers.18.self_attn.k_proj.weight -> blk.18.attn_k.weight | BF16 | [4096, 4096]
model.layers.18.self_attn.o_proj.weight -> blk.18.attn_output.weight | BF16 | [4096, 4096]
model.layers.18.self_attn.q_proj.weight -> blk.18.attn_q.weight | BF16 | [4096, 4096]
model.layers.18.self_attn.v_proj.weight -> blk.18.attn_v.weight | BF16 | [4096, 4096]
model.layers.19.input_layernorm.weight -> blk.19.attn_norm.weight | BF16 | [4096]
model.layers.19.mlp.down_proj.weight -> blk.19.ffn_down.weight | BF16 | [4096, 11008]
model.layers.19.mlp.gate_proj.weight -> blk.19.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.19.mlp.up_proj.weight -> blk.19.ffn_up.weight | BF16 | [11008, 4096]
model.layers.19.post_attention_layernorm.weight -> blk.19.ffn_norm.weight | BF16 | [4096]
model.layers.19.self_attn.k_proj.weight -> blk.19.attn_k.weight | BF16 | [4096, 4096]
model.layers.19.self_attn.o_proj.weight -> blk.19.attn_output.weight | BF16 | [4096, 4096]
model.layers.19.self_attn.q_proj.weight -> blk.19.attn_q.weight | BF16 | [4096, 4096]
model.layers.19.self_attn.v_proj.weight -> blk.19.attn_v.weight | BF16 | [4096, 4096]
model.layers.20.input_layernorm.weight -> blk.20.attn_norm.weight | BF16 | [4096]
model.layers.20.mlp.down_proj.weight -> blk.20.ffn_down.weight | BF16 | [4096, 11008]
model.layers.20.mlp.gate_proj.weight -> blk.20.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.20.mlp.up_proj.weight -> blk.20.ffn_up.weight | BF16 | [11008, 4096]
model.layers.20.post_attention_layernorm.weight -> blk.20.ffn_norm.weight | BF16 | [4096]
model.layers.20.self_attn.k_proj.weight -> blk.20.attn_k.weight | BF16 | [4096, 4096]
model.layers.20.self_attn.o_proj.weight -> blk.20.attn_output.weight | BF16 | [4096, 4096]
model.layers.20.self_attn.q_proj.weight -> blk.20.attn_q.weight | BF16 | [4096, 4096]
model.layers.20.self_attn.v_proj.weight -> blk.20.attn_v.weight | BF16 | [4096, 4096]
model.layers.21.input_layernorm.weight -> blk.21.attn_norm.weight | BF16 | [4096]
model.layers.21.mlp.down_proj.weight -> blk.21.ffn_down.weight | BF16 | [4096, 11008]
model.layers.21.mlp.gate_proj.weight -> blk.21.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.21.mlp.up_proj.weight -> blk.21.ffn_up.weight | BF16 | [11008, 4096]
model.layers.21.post_attention_layernorm.weight -> blk.21.ffn_norm.weight | BF16 | [4096]
model.layers.21.self_attn.k_proj.weight -> blk.21.attn_k.weight | BF16 | [4096, 4096]
model.layers.21.self_attn.o_proj.weight -> blk.21.attn_output.weight | BF16 | [4096, 4096]
model.layers.21.self_attn.q_proj.weight -> blk.21.attn_q.weight | BF16 | [4096, 4096]
model.layers.21.self_attn.v_proj.weight -> blk.21.attn_v.weight | BF16 | [4096, 4096]
model.layers.22.input_layernorm.weight -> blk.22.attn_norm.weight | BF16 | [4096]
model.layers.22.mlp.down_proj.weight -> blk.22.ffn_down.weight | BF16 | [4096, 11008]
model.layers.22.mlp.gate_proj.weight -> blk.22.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.22.mlp.up_proj.weight -> blk.22.ffn_up.weight | BF16 | [11008, 4096]
model.layers.22.post_attention_layernorm.weight -> blk.22.ffn_norm.weight | BF16 | [4096]
model.layers.22.self_attn.k_proj.weight -> blk.22.attn_k.weight | BF16 | [4096, 4096]
model.layers.22.self_attn.o_proj.weight -> blk.22.attn_output.weight | BF16 | [4096, 4096]
model.layers.22.self_attn.q_proj.weight -> blk.22.attn_q.weight | BF16 | [4096, 4096]
model.layers.22.self_attn.v_proj.weight -> blk.22.attn_v.weight | BF16 | [4096, 4096]
model.layers.23.self_attn.k_proj.weight -> blk.23.attn_k.weight | BF16 | [4096, 4096]
model.layers.23.self_attn.o_proj.weight -> blk.23.attn_output.weight | BF16 | [4096, 4096]
model.layers.23.self_attn.q_proj.weight -> blk.23.attn_q.weight | BF16 | [4096, 4096]
model.layers.23.self_attn.v_proj.weight -> blk.23.attn_v.weight | BF16 | [4096, 4096]
lm_head.weight -> output.weight | BF16 | [56064, 4096]
model.layers.23.input_layernorm.weight -> blk.23.attn_norm.weight | BF16 | [4096]
model.layers.23.mlp.down_proj.weight -> blk.23.ffn_down.weight | BF16 | [4096, 11008]
model.layers.23.mlp.gate_proj.weight -> blk.23.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.23.mlp.up_proj.weight -> blk.23.ffn_up.weight | BF16 | [11008, 4096]
model.layers.23.post_attention_layernorm.weight -> blk.23.ffn_norm.weight | BF16 | [4096]
model.layers.24.input_layernorm.weight -> blk.24.attn_norm.weight | BF16 | [4096]
model.layers.24.mlp.down_proj.weight -> blk.24.ffn_down.weight | BF16 | [4096, 11008]
model.layers.24.mlp.gate_proj.weight -> blk.24.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.24.mlp.up_proj.weight -> blk.24.ffn_up.weight | BF16 | [11008, 4096]
model.layers.24.post_attention_layernorm.weight -> blk.24.ffn_norm.weight | BF16 | [4096]
model.layers.24.self_attn.k_proj.weight -> blk.24.attn_k.weight | BF16 | [4096, 4096]
model.layers.24.self_attn.o_proj.weight -> blk.24.attn_output.weight | BF16 | [4096, 4096]
model.layers.24.self_attn.q_proj.weight -> blk.24.attn_q.weight | BF16 | [4096, 4096]
model.layers.24.self_attn.v_proj.weight -> blk.24.attn_v.weight | BF16 | [4096, 4096]
model.layers.25.input_layernorm.weight -> blk.25.attn_norm.weight | BF16 | [4096]
model.layers.25.mlp.down_proj.weight -> blk.25.ffn_down.weight | BF16 | [4096, 11008]
model.layers.25.mlp.gate_proj.weight -> blk.25.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.25.mlp.up_proj.weight -> blk.25.ffn_up.weight | BF16 | [11008, 4096]
model.layers.25.post_attention_layernorm.weight -> blk.25.ffn_norm.weight | BF16 | [4096]
model.layers.25.self_attn.k_proj.weight -> blk.25.attn_k.weight | BF16 | [4096, 4096]
model.layers.25.self_attn.o_proj.weight -> blk.25.attn_output.weight | BF16 | [4096, 4096]
model.layers.25.self_attn.q_proj.weight -> blk.25.attn_q.weight | BF16 | [4096, 4096]
model.layers.25.self_attn.v_proj.weight -> blk.25.attn_v.weight | BF16 | [4096, 4096]
model.layers.26.input_layernorm.weight -> blk.26.attn_norm.weight | BF16 | [4096]
model.layers.26.mlp.down_proj.weight -> blk.26.ffn_down.weight | BF16 | [4096, 11008]
model.layers.26.mlp.gate_proj.weight -> blk.26.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.26.mlp.up_proj.weight -> blk.26.ffn_up.weight | BF16 | [11008, 4096]
model.layers.26.post_attention_layernorm.weight -> blk.26.ffn_norm.weight | BF16 | [4096]
model.layers.26.self_attn.k_proj.weight -> blk.26.attn_k.weight | BF16 | [4096, 4096]
model.layers.26.self_attn.o_proj.weight -> blk.26.attn_output.weight | BF16 | [4096, 4096]
model.layers.26.self_attn.q_proj.weight -> blk.26.attn_q.weight | BF16 | [4096, 4096]
model.layers.26.self_attn.v_proj.weight -> blk.26.attn_v.weight | BF16 | [4096, 4096]
model.layers.27.input_layernorm.weight -> blk.27.attn_norm.weight | BF16 | [4096]
model.layers.27.mlp.down_proj.weight -> blk.27.ffn_down.weight | BF16 | [4096, 11008]
model.layers.27.mlp.gate_proj.weight -> blk.27.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.27.mlp.up_proj.weight -> blk.27.ffn_up.weight | BF16 | [11008, 4096]
model.layers.27.post_attention_layernorm.weight -> blk.27.ffn_norm.weight | BF16 | [4096]
model.layers.27.self_attn.k_proj.weight -> blk.27.attn_k.weight | BF16 | [4096, 4096]
model.layers.27.self_attn.o_proj.weight -> blk.27.attn_output.weight | BF16 | [4096, 4096]
model.layers.27.self_attn.q_proj.weight -> blk.27.attn_q.weight | BF16 | [4096, 4096]
model.layers.27.self_attn.v_proj.weight -> blk.27.attn_v.weight | BF16 | [4096, 4096]
model.layers.28.input_layernorm.weight -> blk.28.attn_norm.weight | BF16 | [4096]
model.layers.28.mlp.down_proj.weight -> blk.28.ffn_down.weight | BF16 | [4096, 11008]
model.layers.28.mlp.gate_proj.weight -> blk.28.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.28.mlp.up_proj.weight -> blk.28.ffn_up.weight | BF16 | [11008, 4096]
model.layers.28.post_attention_layernorm.weight -> blk.28.ffn_norm.weight | BF16 | [4096]
model.layers.28.self_attn.k_proj.weight -> blk.28.attn_k.weight | BF16 | [4096, 4096]
model.layers.28.self_attn.o_proj.weight -> blk.28.attn_output.weight | BF16 | [4096, 4096]
model.layers.28.self_attn.q_proj.weight -> blk.28.attn_q.weight | BF16 | [4096, 4096]
model.layers.28.self_attn.v_proj.weight -> blk.28.attn_v.weight | BF16 | [4096, 4096]
model.layers.29.input_layernorm.weight -> blk.29.attn_norm.weight | BF16 | [4096]
model.layers.29.mlp.down_proj.weight -> blk.29.ffn_down.weight | BF16 | [4096, 11008]
model.layers.29.mlp.gate_proj.weight -> blk.29.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.29.mlp.up_proj.weight -> blk.29.ffn_up.weight | BF16 | [11008, 4096]
model.layers.29.post_attention_layernorm.weight -> blk.29.ffn_norm.weight | BF16 | [4096]
model.layers.29.self_attn.k_proj.weight -> blk.29.attn_k.weight | BF16 | [4096, 4096]
model.layers.29.self_attn.o_proj.weight -> blk.29.attn_output.weight | BF16 | [4096, 4096]
model.layers.29.self_attn.q_proj.weight -> blk.29.attn_q.weight | BF16 | [4096, 4096]
model.layers.29.self_attn.v_proj.weight -> blk.29.attn_v.weight | BF16 | [4096, 4096]
model.layers.30.input_layernorm.weight -> blk.30.attn_norm.weight | BF16 | [4096]
model.layers.30.mlp.down_proj.weight -> blk.30.ffn_down.weight | BF16 | [4096, 11008]
model.layers.30.mlp.gate_proj.weight -> blk.30.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.30.mlp.up_proj.weight -> blk.30.ffn_up.weight | BF16 | [11008, 4096]
model.layers.30.post_attention_layernorm.weight -> blk.30.ffn_norm.weight | BF16 | [4096]
model.layers.30.self_attn.k_proj.weight -> blk.30.attn_k.weight | BF16 | [4096, 4096]
model.layers.30.self_attn.o_proj.weight -> blk.30.attn_output.weight | BF16 | [4096, 4096]
model.layers.30.self_attn.q_proj.weight -> blk.30.attn_q.weight | BF16 | [4096, 4096]
model.layers.30.self_attn.v_proj.weight -> blk.30.attn_v.weight | BF16 | [4096, 4096]
model.layers.31.input_layernorm.weight -> blk.31.attn_norm.weight | BF16 | [4096]
model.layers.31.mlp.down_proj.weight -> blk.31.ffn_down.weight | BF16 | [4096, 11008]
model.layers.31.mlp.gate_proj.weight -> blk.31.ffn_gate.weight | BF16 | [11008, 4096]
model.layers.31.mlp.up_proj.weight -> blk.31.ffn_up.weight | BF16 | [11008, 4096]
model.layers.31.post_attention_layernorm.weight -> blk.31.ffn_norm.weight | BF16 | [4096]
model.layers.31.self_attn.k_proj.weight -> blk.31.attn_k.weight | BF16 | [4096, 4096]
model.layers.31.self_attn.o_proj.weight -> blk.31.attn_output.weight | BF16 | [4096, 4096]
model.layers.31.self_attn.q_proj.weight -> blk.31.attn_q.weight | BF16 | [4096, 4096]
model.layers.31.self_attn.v_proj.weight -> blk.31.attn_v.weight | BF16 | [4096, 4096]
model.norm.weight -> output_norm.weight | BF16 | [4096]
Writing ch_taide_medicine.gguf-unsloth.F16.gguf, format 1
Traceback (most recent call last):
File "/GPUData/working/unsloth/convert__unsloth_to_gguf.py", line 44, in <module>
if True: model.save_pretrained_gguf("ch_taide_medicine.gguf", tokenizer, quantization_method = "quantized")
File "/home/chtseng/envs/LM2/lib/python3.10/site-packages/unsloth/save.py", line 1333, in unsloth_save_pretrained_gguf
file_location = save_to_gguf(model_type, new_save_directory, quantization_method, first_conversion, makefile)
File "/home/chtseng/envs/LM2/lib/python3.10/site-packages/unsloth/save.py", line 957, in save_to_gguf
raise RuntimeError(
RuntimeError: Unsloth: Quantization failed for ./ch_taide_medicine.gguf-unsloth.F16.gguf
You might have to compile llama.cpp yourself, then run this again.
You do not need to close this Python program. Run the following commands in a new terminal:
You must run this in the same folder as you're saving your model.
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp && make clean && LLAMA_CUDA=1 make all -j
Once that's done, redo the quantization.