Labels shape when using model.fit and TFGPT2LMHeadModel

Hi,
I’m trying to fine-tune pretrained TFGPT2LMHeadModel but I get an error on the labels shape.
I tried to pass the input id’s of each sentence, shape: (batch size, sentence length) or shape: (batch size, sentence length, vocab size). (as the logits)

in the example bellow, sentence length = 14, batch size = 2.

my code when labels shape = (batch size, sentence length)):

from transformers import GPT2Tokenizer, TFGPT2LMHeadModel


tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = TFGPT2LMHeadModel.from_pretrained('gpt2')

inputs = tokenizer(list_of_sentenses, return_tensors="tf",return_token_type_ids=True)
features = {'input_ids':inputs['input_ids'],'attention_mask':inputs['attention_mask'],'token_type_ids':inputs['token_type_ids']}

# for LMHeadModel the labels is the input ids of the sentens
labels = inputs['input_ids']


features_dataset = Dataset.from_tensor_slices(features)
labels_dataset = Dataset.from_tensor_slices(labels)
dataset = Dataset.zip((features_dataset, labels_dataset))

optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss) 
model.fit(dataset)


    ValueError: Shapes (1792,) and (14,) are incompatible

my code when label shape = (batch size, sentence length, vocab size):

from transformers import GPT2Tokenizer, TFGPT2LMHeadModel


tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = TFGPT2LMHeadModel.from_pretrained('gpt2')

inputs = tokenizer(list_of_sentenses, return_tensors="tf",return_token_type_ids=True)
features = {'input_ids':inputs['input_ids'],'attention_mask':inputs['attention_mask'],'token_type_ids':inputs['token_type_ids']}

# for LMHeadModel the labels is the input ids of the sentens
labels = tf.expand_dims(tf.one_hot(inputs['input_ids'], 50257),2)

features_dataset = Dataset.from_tensor_slices(features)
labels_dataset = Dataset.from_tensor_slices(labels)
dataset = Dataset.zip((features_dataset, labels_dataset))

optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss) 
model.fit(dataset)


    ValueError: Shapes (14,) and (703598,) are incompatible

Thanks!