0
I am trying to run meta-llama/Llama-2-7b-hf on langchain with a HuggingfacePipeline. My set-up is below.
Why is the llm loaded with the gpt2 model. I believe gpt2 is the default for the HuggingfacePipeline(), but I am passing the model with transformers.AutoModelForCausalLM.from_pretrained() with the meta-llama/Llama-2-7b-hf override…
What am I doing wrong?
bnb_config = transformers.BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type='nf4',
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=bfloat16,
# llm_int8_enable_fp32_cpu_offload=True
)
model_config = transformers.AutoConfig.from_pretrained(
"meta-llama/Llama-2-7b-hf",
use_auth_token=hf_auth
)
tokenizer = transformers.AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
model = transformers.AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf",
trust_remote_code=True,
config=model_config,
quantization_config=bnb_config,
device_map="auto",
use_auth_token=hf_auth
)
model.eval()
pipe = transformers.pipeline(
model=model,
tokenizer=tokenizer,
task="text-generation",
return_full_text=True,
temperature=0.1, # 'randomness' of outputs, 0.0 is the min and 1.0 the max
max_new_tokens=64, # mex number of tokens to generate in the output
repetition_penalty=1.1 # without this output begins repeating
)
llm = HuggingFacePipeline(pipeline=pipe)
print(llm)```
>>>HuggingFacePipeline
Params: {'model_id': 'gpt2', 'model_kwargs': None}