HI,
I’m trying to finetune LayoutLMv2 model on colab TPU but facing the below run time errors. Any suggestions ?
Code snippet :
def training_function():
accelerator = Accelerator()
train_dataloader, eval_dataloader = create_dataloaders(
train_batch_size=hyperparameters["train_batch_size"], eval_batch_size=hyperparameters["eval_batch_size"]
)
set_seed(hyperparameters["seed"])
model = AutoModelForSequenceClassification.from_pretrained("microsoft/layoutlmv2-base-uncased", num_labels=2)
optimizer = AdamW(params=model.parameters(), lr=hyperparameters["learning_rate"])
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader
)
num_epochs = hyperparameters["num_epochs"]
lr_scheduler = get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=100,
num_training_steps=len(train_dataloader) * num_epochs,
)
for epoch in range(num_epochs):
model.train()
for step, batch in enumerate(train_dataloader):
outputs = model(**batch)
loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
notebook_launcher(training_function)
And I’m getting the following error
Exception in device=TPU:5: torch_xla/csrc/tensor_methods.cpp:880 : Check failed: xla::ShapeUtil::Compatible(shapes.back(), tensor_shape)