Loading Custom Datasets

Thanks Quentin, this has been very helpful.
I had to change pos, chunk, and ner in the features (from pos_tags, chunk_tags, ner_tags) but other than that I got much further.
What I am working on now is a call to
trainer.train()

I am getting the error:

  0%|          | 0/3 [00:00<?, ?it/s]Traceback (most recent call last):
  File "/Users/greggwcasey/Google Drive/PycharmProjectsLocal/ADP_Project_NER/venv/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 517, in __next__
    data = self._next_data()
  File "/Users/greggwcasey/Google Drive/PycharmProjectsLocal/ADP_Project_NER/venv/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 557, in _next_data
    data = self._dataset_fetcher.fetch(index)  # may raise StopIteration
  File "/Users/greggwcasey/Google Drive/PycharmProjectsLocal/ADP_Project_NER/venv/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 47, in fetch
    return self.collate_fn(data)
  File "/Users/greggwcasey/Google Drive/PycharmProjectsLocal/ADP_Project_NER/venv/lib/python3.8/site-packages/transformers/data/data_collator.py", line 80, in default_data_collator
    batch[k] = torch.tensor([f[k] for f in features])
RuntimeError: Could not infer dtype of pyarrow.lib.Field
python-BaseException

At the point of error, k = {str} ‘_schema’ and v = {Schema:5} (SEE IMAGE) so I suspect that I am not setting a parameter correctly. I think my issue is that chunk, ner, and pos are lists of int64 instead of list of strings.

The code I have (as small as I think I can make it) is:

import datasets
from transformers import BertForTokenClassification
from transformers import Trainer, TrainingArguments

from datasets import load_dataset   
features = datasets.Features(
        {
            "id": datasets.Value("string"),
            "words": datasets.Sequence(datasets.Value("string")),
            "pos": datasets.Sequence(
                datasets.features.ClassLabel(
                    names=[
                        '"',
                        "''",
                        "#",
                        "$",
                        "(",
                        ")",
                        ",",
                        ".",
                        ":",
                        "``",
                        "CC",
                        "CD",
                        "DT",
                        "EX",
                        "FW",
                        "IN",
                        "JJ",
                        "JJR",
                        "JJS",
                        "LS",
                        "MD",
                        "NN",
                        "NNP",
                        "NNPS",
                        "NNS",
                        "NN|SYM",
                        "PDT",
                        "POS",
                        "PRP",
                        "PRP$",
                        "RB",
                        "RBR",
                        "RBS",
                        "RP",
                        "SYM",
                        "TO",
                        "UH",
                        "VB",
                        "VBD",
                        "VBG",
                        "VBN",
                        "VBP",
                        "VBZ",
                        "WDT",
                        "WP",
                        "WP$",
                        "WRB",
                    ]
                )
            ),
            "chunk": datasets.Sequence(
                datasets.features.ClassLabel(
                    names=[
                        "O",
                        "B-ADJP",
                        "I-ADJP",
                        "B-ADVP",
                        "I-ADVP",
                        "B-CONJP",
                        "I-CONJP",
                        "B-INTJ",
                        "I-INTJ",
                        "B-LST",
                        "I-LST",
                        "B-NP",
                        "I-NP",
                        "B-PP",
                        "I-PP",
                        "B-PRT",
                        "I-PRT",
                        "B-SBAR",
                        "I-SBAR",
                        "B-UCP",
                        "I-UCP",
                        "B-VP",
                        "I-VP",
                    ]
                )
            ),
            "ner": datasets.Sequence(
                datasets.features.ClassLabel(
                    names=[
                        "O",
                        "B-PER",
                        "I-PER",
                        "B-ORG",
                        "I-ORG",
                        "B-LOC",
                        "I-LOC",
                        "B-MISC",
                        "I-MISC",
                        "B-SSN",
                        "I-SSN",
                        "B-CITY",
                        "I-CITY",
                    ]
                )
            ),
        }
    )

    def ADPLoadData():
        dataFiles = {
            "train": "./ADPConll/ADPConll_train.json",
            "validation": "./ADPConll/ADPConll_valid.json",
            "test": "./ADPConll/ADPConll_test.json"
        }
        # dataset = load_dataset('json', data_files='./ADPConll/ADPConll_train.json')
        dataset = load_dataset('json', data_files=dataFiles)
        return dataset


    ADPDataset = ADPLoadData()
    ADPDataset = ADPDataset.map(features.encode_example, features=features)
    print(ADPDataset)

    modelName = 'dbmdz/bert-large-cased-finetuned-conll03-english'
    model = BertForTokenClassification.from_pretrained(modelName)

    training_args = TrainingArguments(
        output_dir='./results',  # output directory
        num_train_epochs=3,  # total number of training epochs
        per_device_train_batch_size=16,  # 1440 batch size per device during training
        per_device_eval_batch_size=16,  # 64,   # batch size for evaluation
        warmup_steps=500,  # number of warmup steps for learning rate scheduler
        weight_decay=0.01,  # strength of weight decay
        logging_dir='./logs',  # directory for storing logs
        logging_steps=10,
    )


    trainer = Trainer(
        model=model,  # the instantiated 🤗 Transformers model to be trained
        args=training_args,  # training arguments, defined above
        train_dataset=[ADPDataset.data['train']],  # ,  # training dataset
        eval_dataset=[ADPDataset.data['validation']],  # evaluation dataset
    )

    trainer.train()
    trainer.save_model('./newModel')

    trainer.evaluate()