Loading natural_questions

using just

from datasets import load_dataset

dataset = load_dataset(β€œnatural_questions”)

gives me the following error

File ~/anaconda3/lib/python3.9/site-packages/datasets/builder.py:1879, in BeamBasedBuilder._download_and_prepare(self, dl_manager, verify_infos, **prepare_splits_kwargs)
1877 if not beam_runner and not beam_options:
1878 usage_example = f"load_dataset(β€˜{self.name}’, β€˜{self.config.name}’, beam_runner=β€˜DirectRunner’)"
β†’ 1879 raise MissingBeamOptions(
1880 "Trying to generate a dataset using Apache Beam, yet no Beam Runner "
1881 "or PipelineOptions() has been provided in load_dataset or in the "
1882 "builder arguments. For big datasets it has to run on large-scale data "
1883 "processing tools like Dataflow, Spark, etc. More information about "
1884 "Apache Beam runners at "
1885 β€œApache Beam Capability Matrix”
1886 "\nIf you really want to run it locally because you feel like the "
1887 β€œDataset is small enough, you can use the local beam runner called "
1888 β€œDirectRunner (you may run out of memory). \nExample of usage: "
1889 f”\n\t{usage_example}”
1890 )
1892 # Beam type checking assumes transforms multiple outputs are of same type,
1893 # which is not our case. Plus it doesn’t handle correctly all types, so we
1894 # are better without it.
1895 pipeline_options = {β€œpipeline_type_check”: False}

MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in load_dataset or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at Apache Beam Capability Matrix
If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called DirectRunner (you may run out of memory).
Example of usage:
load_dataset('natural_questions', 'default', beam_runner='DirectRunner')

using load_dataset(β€˜natural_questions’, β€˜default’, beam_runner=β€˜DirectRunner’) Gives this error

load_dataset(β€˜natural_questions’, β€˜default’, beam_runner=β€˜DirectRunner’)
Downloading and preparing dataset natural_questions/default to /.cache/huggingface/datasets/natural_questions/default/0.0.4/da8124c83e3394df62c0f9bbc6c07652bbe9288ad833053134d5f0e978bb4ee5…
Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 17.4k/17.4k [00:00<00:00, 1.03MB/s]
Downloading data files: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2/2 [00:00<00:00, 182.84it/s]

100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1/1 [00:00<00:00, 79.02parquet files/s]
0%| | 0/1 [03:38<?, ?shards/s]
Traceback (most recent call last):
File β€œβ€, line 1, in
File β€œ/anaconda3/envs/lib/python3.9/site-packages/datasets/load.py”, line 1741, in load_dataset
builder_instance.download_and_prepare(
File β€œ/anaconda3/envs/lib/python3.9/site-packages/datasets/builder.py”, line 822, in download_and_prepare
self._download_and_prepare(
File β€œ/anaconda3/envs/lib/python3.9/site-packages/datasets/builder.py”, line 1920, in _download_and_prepare
num_examples, num_bytes = beam_writer.finalize(metrics.query(m_filter))
File β€œ/anaconda3/envs/lib/python3.9/site-packages/datasets/arrow_writer.py”, line 676, in finalize
shard_num_bytes, _ = parquet_to_arrow(source, destination)
File β€œ/anaconda3/envs/lib/python3.9/site-packages/datasets/arrow_writer.py”, line 719, in parquet_to_arrow
for record_batch in parquet_file.iter_batches():
File β€œpyarrow/_parquet.pyx”, line 1323, in iter_batches
File β€œpyarrow/error.pxi”, line 121, in pyarrow.lib.check_status
pyarrow.lib.ArrowNotImplementedError: Nested data conversions not implemented for chunked array outputs