Im trying to save to local this model: AdamCodd/donut-receipts-extract · Hugging Face
Seems like I barely got it running this code (using torchScript):
import torch
import re
from PIL import Image
from transformers import DonutProcessor, VisionEncoderDecoderModel
model_name = "AdamCodd/donut-receipts-extract"
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
processor = DonutProcessor.from_pretrained(model_name)
model = VisionEncoderDecoderModel.from_pretrained(model_name)
model.to(device)
image_path = "./imagen.jpg"
image = Image.open(image_path).convert("RGB")
pixel_values = processor(image, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
# Generate output using model
model.eval()
with torch.no_grad():
task_prompt = "<s_receipt>" # <s_cord-v2> for v1
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
decoder_input_ids = decoder_input_ids.to(device)
model = VisionEncoderDecoderModel.from_pretrained(model_name, torchscript=True)
traced_model = torch.jit.trace(model, (pixel_values, decoder_input_ids))
torch.jit.save(traced_model, "receipts_model.pt")
Once It generates that ‘receipts_model.pt’ file… How should I prove this model?
I have tried with this script but do not know how to make that ‘token_ids’ could return more than just one:
import torch
import re
from PIL import Image
from transformers import DonutProcessor
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# Cargar el procesador
processor = DonutProcessor.from_pretrained("AdamCodd/donut-receipts-extract")
# Cargar el modelo trazado localmente
model_path = "receipts_model.pt" # Reemplaza con la ruta a tu modelo TorchScript
model = torch.jit.load(model_path)
model.to(device)
def load_and_preprocess_image(image_path: str, processor):
"""
Load an image and preprocess it for the model.
"""
image = Image.open(image_path).convert("RGB")
pixel_values = processor(image, return_tensors="pt").pixel_values
return pixel_values
def generate_text_from_image(model, image_path: str, processor, device):
"""
Generate text from an image using the trained model.
"""
# Load and preprocess the image
pixel_values = load_and_preprocess_image(image_path, processor)
pixel_values = pixel_values.to(device)
# Generate output using model
model.eval()
with torch.no_grad():
task_prompt = "<s_receipt>" # <s_cord-v2> for v1
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
decoder_input_ids = decoder_input_ids.to(device)
generated_outputs = model(pixel_values, decoder_input_ids)
# Extract logits and convert to token ids
logits = generated_outputs[0] if isinstance(generated_outputs, tuple) else generated_outputs
token_ids = torch.argmax(logits, dim=-1)
# Decode generated output
decoded_text = processor.batch_decode(token_ids)[0]
decoded_text = decoded_text.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
decoded_text = re.sub(r"<.*?>", "", decoded_text, count=1).strip() # remove first task start token
decoded_text = processor.token2json(decoded_text)
return decoded_text
# Example usage
image_path = "./imagen.jpg" # Reemplaza con la ruta a tu imagen
extracted_text = generate_text_from_image(model, image_path, processor, device)
print("Extracted Text:", extracted_text)
Hope anyone could help me! thanks!