Models are the same after loading lora parameters using peft library

Hi, I created a lora and tried to merge it with base model but somehow the new model and the original model is giving the same logits.

base_model is as follows:

LlamaForCausalLM(
  (model): LlamaModel(
    (embed_tokens): Embedding(32000, 4096)
    (layers): ModuleList(
      (0-31): 32 x LlamaDecoderLayer(
        (self_attn): LlamaSdpaAttention(
          (q_proj): Linear(in_features=4096, out_features=4096, bias=False)
          (k_proj): Linear(in_features=4096, out_features=4096, bias=False)
          (v_proj): Linear(in_features=4096, out_features=4096, bias=False)
          (o_proj): Linear(in_features=4096, out_features=4096, bias=False)
          (rotary_emb): LlamaRotaryEmbedding()
        )
        (mlp): LlamaMLP(
          (gate_proj): Linear(in_features=4096, out_features=11008, bias=False)
          (up_proj): Linear(in_features=4096, out_features=11008, bias=False)
          (down_proj): Linear(in_features=11008, out_features=4096, bias=False)
          (act_fn): SiLU()
        )
        (input_layernorm): LlamaRMSNorm()
        (post_attention_layernorm): LlamaRMSNorm()
      )
    )
    (norm): LlamaRMSNorm()
  )
  (lm_head): Linear(in_features=4096, out_features=32000, bias=False)
)

and the lora_model is created by following code:


expert_lora_path = '/lora-llm/llama-2-7b-expert-shakespeare'
expert_lora_config = LoraConfig.from_pretrained(expert_lora_path)
expert_peft_model = PeftModel.from_pretrained(base_model, expert_lora_path, device_map='cuda').to('cuda')

and is as follows:

PeftModelForCausalLM(
  (base_model): LoraModel(
    (model): LlamaForCausalLM(
      (model): LlamaModel(
        (embed_tokens): Embedding(32000, 4096)
        (layers): ModuleList(
          (0-31): 32 x LlamaDecoderLayer(
            (self_attn): LlamaSdpaAttention(
              (q_proj): lora.Linear(
                (base_layer): Linear(in_features=4096, out_features=4096, bias=False)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.1, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=4096, out_features=32, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=32, out_features=4096, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
              )
              (k_proj): Linear(in_features=4096, out_features=4096, bias=False)
              (v_proj): lora.Linear(
                (base_layer): Linear(in_features=4096, out_features=4096, bias=False)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.1, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=4096, out_features=32, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=32, out_features=4096, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
              )
              (o_proj): Linear(in_features=4096, out_features=4096, bias=False)
              (rotary_emb): LlamaRotaryEmbedding()
            )
            (mlp): LlamaMLP(
              (gate_proj): Linear(in_features=4096, out_features=11008, bias=False)
              (up_proj): Linear(in_features=4096, out_features=11008, bias=False)
              (down_proj): Linear(in_features=11008, out_features=4096, bias=False)
              (act_fn): SiLU()
            )
            (input_layernorm): LlamaRMSNorm()
            (post_attention_layernorm): LlamaRMSNorm()
          )
        )
        (norm): LlamaRMSNorm()
      )
      (lm_head): Linear(in_features=4096, out_features=32000, bias=False)
    )
  )
)


even though, i can clearly see lora modules being injected into the base_model, the logits still remain the same.

I double checked the above argument by comparing the parameters of two models, by the following code:


flag = True
for p1, p2 in zip(base_model.parameters(), antiexpert_peft_model.parameters()):
    if p1.data.ne(p2.data).sum() > 0:
         flag = False
print (flag)

which gives me True as response. I’m confused as what’s wrong in my implementation or was there any error while training.