how do i use the yaml file in my code below, i want to use SFTTrainer i dont want to run it through scripts,is there a way to train my model on multi-gpu. Is there a way to pass the file to the train and automatically train on multi gpu
from datasets import load_dataset
dataset = load_dataset("Alok2304/Indian_Law_Final_Dataset",split="train[:30%]")
dataset
from transformers import BitsAndBytesConfig
import torch
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.2-3B",
quantization_config = bnb_config,
trust_remote_code = True).to(device)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-3B")
from peft import prepare_model_for_kbit_training
model = prepare_model_for_kbit_training(model)
from peft import LoraConfig, get_peft_model
lora_config = LoraConfig(
r=8,
lora_alpha=16,
target_modules= ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
lora_dropout=0.05,
bias="none",
)
model = get_peft_model(model, lora_config)
from trl import setup_chat_format
model,tokenizer = setup_chat_format(model,tokenizer)
from trl import SFTConfig, SFTTrainer
args = SFTConfig(
output_dir = "lora_model/",
per_device_train_batch_size = 8,
per_device_eval_batch_size = 8,
learning_rate = 2e-05,
gradient_accumulation_steps = 2,
max_steps = 300,
logging_strategy = "steps",
logging_steps = 25,
save_strategy = "steps",
save_steps = 25,
eval_strategy = "steps",
eval_steps = 25,
fp16 = True,
data_seed=42,
max_seq_length = 2048,
gradient_checkpointing=True,
report_to = "none",
)
trainer = SFTTrainer(
model = model,
args = args,
processing_class = tokenizer,
train_dataset = dataset['train'],
eval_dataset = dataset['test'],)