Name is not correct

import torch
import torch.nn as nn
from layers.Embed import DataEmbedding_wo_pos
from layers.AutoCorrelation import AutoCorrelation, AutoCorrelationLayer
from layers.Autoformer_EncDec import Encoder, Decoder, EncoderLayer, DecoderLayer, my_Layernorm, series_decomp

class Model(nn.Module):
“”"
Autoformer is the first method to achieve the series-wise connection,
with inherent O(LlogL) complexity
“”"
def init(self, configs):
super(Model, self).init()
self.seq_len = configs.seq_len
self.label_len = configs.label_len
self.pred_len = configs.pred_len
self.output_attention = configs.output_attention

    # Decomp
    kernel_size = configs.moving_avg
    self.decomp = series_decomp(kernel_size)

    # Embedding
    # The series-wise connection inherently contains the sequential information.
    # Thus, we can discard the position embedding of transformers.
    self.enc_embedding = DataEmbedding_wo_pos(configs.enc_in, configs.d_model, configs.embed, configs.freq,
                                              configs.dropout)
    self.dec_embedding = DataEmbedding_wo_pos(configs.dec_in, configs.d_model, configs.embed, configs.freq,
                                              configs.dropout)

    # Encoder
    self.encoder = Encoder(
        [
            EncoderLayer(
                AutoCorrelationLayer(
                    AutoCorrelation(False, configs.factor, attention_dropout=configs.dropout,
                                    output_attention=configs.output_attention),
                    configs.d_model, configs.n_heads),
                configs.d_model,
                configs.d_ff,
                moving_avg=configs.moving_avg,
                dropout=configs.dropout,
                activation=configs.activation
            ) for l in range(configs.e_layers)
        ],
        norm_layer=my_Layernorm(configs.d_model)
    )
    # Decoder
    self.decoder = Decoder(
        [
            DecoderLayer(
                AutoCorrelationLayer(
                    AutoCorrelation(True, configs.factor, attention_dropout=configs.dropout,
                                    output_attention=False),
                    configs.d_model, configs.n_heads),
                AutoCorrelationLayer(
                    AutoCorrelation(False, configs.factor, attention_dropout=configs.dropout,
                                    output_attention=False),
                    configs.d_model, configs.n_heads),
                configs.d_model,
                configs.c_out,
                configs.d_ff,
                moving_avg=configs.moving_avg,
                dropout=configs.dropout,
                activation=configs.activation,
            )
            for l in range(configs.d_layers)
        ],
        norm_layer=my_Layernorm(configs.d_model),
        projection=nn.Linear(configs.d_model, configs.c_out, bias=True)
    )

def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec,
            enc_self_mask=None, dec_self_mask=None, dec_enc_mask=None):
    # decomp init
    mean = torch.mean(x_enc, dim=1).unsqueeze(1).repeat(1, self.pred_len, 1)
    zeros = torch.zeros([x_dec.shape[0], self.pred_len, x_dec.shape[2]], device=x_enc.device)
    seasonal_init, trend_init = self.decomp(x_enc)
    # decoder input
    trend_init = torch.cat([trend_init[:, -self.label_len:, :], mean], dim=1)
    seasonal_init = torch.cat([seasonal_init[:, -self.label_len:, :], zeros], dim=1)
    # enc
    enc_out = self.enc_embedding(x_enc, x_mark_enc)
    enc_out, attns = self.encoder(enc_out, attn_mask=enc_self_mask)
    # dec
    dec_out = self.dec_embedding(seasonal_init, x_mark_dec)
    seasonal_part, trend_part = self.decoder(dec_out, enc_out, x_mask=dec_self_mask, cross_mask=dec_enc_mask,
                                             trend=trend_init)
    # final
    dec_out = trend_part + seasonal_part

    if self.output_attention:
        return dec_out[:, -self.pred_len:, :], attns
    else:
        return dec_out[:, -self.pred_len:, :]  # [B, L, D]