PEFT tuning error

Hi, I was finetuning a DNABERT model using LORA.
However, there seems to have a data loading error after applying LORA.
My data looks like

Dataset({
features: [‘binding_energy’, ‘label’, ‘input_ids’, ‘token_type_ids’, ‘attention_mask’, ‘labels’],
num_rows: 9261
})

and my code is

    config = BertConfig.from_pretrained(
        data_training_args.model_path,
        num_labels=1,
    )
    tokenizer = DNATokenizer.from_pretrained(
        data_training_args.model_path,
        do_lower_case=False,
    )
    model = DNABertForSequenceClassification.from_pretrained(
        data_training_args.model_path,
        from_tf=bool(".ckpt" in data_training_args.model_path),
        config=config,
    )
    
    # Define LoRA Config
    lora_config = LoraConfig(
                     r=LORA_R,
                     lora_alpha=LORA_ALPHA,
                     lora_dropout=LORA_DROPOUT,
                     bias="none",
                    inference_mode=False
    )
    model = get_peft_model(model, lora_config)
    model.print_trainable_parameters()
    
    def collate_fn(examples):
        rdict = {}
        print(examples)
        for k in examples[0].keys():
            if k not in [
                "binding_energy",
                "input_ids",
                "token_type_ids",
                "attention_mask",
                "labels",
            ]:
                continue
            rdict[k] = torch.stack([torch.tensor(example[k]) for example in examples])
        rdict["binding_energy"] = torch.unsqueeze(rdict["binding_energy"], 1)
        return rdict

    train_dataset = load_from_disk(data_training_args.train_data_dir)
    dev_dataset = load_from_disk(data_training_args.dev_data_dir)

    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=dev_dataset,
        tokenizer=tokenizer,
        data_collator=collate_fn,
        compute_metrics=compute_metrics
    )

Then there is a key error:

rdict[“binding_energy”] = torch.unsqueeze(rdict[“binding_energy”], 1)
KeyError: ‘binding_energy’
When I print examples, only label is there, but my loaded data has more than that. And without LORA won’t have such issue.
Wondering why would this happen? Thanks!