Pipeline Error: PeftModel... is not supported for text-classification

How do I create a text-classification pipeline with a PEFT/LoRA trained model? My (partial) code is

model_checkpoint = 'roberta-base'
model = AutoModelForSequenceClassification.from_pretrained(
    model_checkpoint, num_labels=2, id2label=id2label, label2id=label2id)
...
peft_config = LoraConfig(task_type="SEQ_CLS",
                         r=4,
                         lora_alpha=32,
                         lora_dropout=0.01,
                         target_modules=['query'],
                         )
model = get_peft_model(model, peft_config)
training_args = TrainingArguments(
    output_dir=model_checkpoint + "-lora-text-classification",
    learning_rate=lr,
    per_device_train_batch_size=batch_size,
    per_device_eval_batch_size=batch_size,
    num_train_epochs=num_epochs,
    weight_decay=0.01,
    evaluation_strategy="epoch",
    save_strategy="epoch",
    load_best_model_at_end=True,
    report_to=None,
)
# creater trainer object
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_dataset["train"],
    eval_dataset=tokenized_dataset["validation"],
    tokenizer=tokenizer,
    data_collator=data_collator,
    compute_metrics=compute_metrics,
)
trainer.train()

classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)

But the last step generates this error

The model ‘PeftModelForSequenceClassification’ is not supported for text-classification. Supported models are […].

What is the correct way to make pipeline with PEFT/LoRA trained model?

The model ‘PeftModelForSequenceClassification’ is not supported for text-classification. Supported models are […].

Is actually a warning not error. Even with the warning, the inference is the same as if done manually like shown here Text classification.