I want to modify the default parameters in the PretrainedConfig and use it in the pipeline,
prediction = pipeline('text-generation', model=model_path, tokenizer=tokenizerObject)
Can someone please help me in constructing the PretrainedConfig object with parameters so that I can use it in the pipeline object.
lewtun
2
Hi @bala1802, since the TextGenerationPipeline
accepts a pretrained model as an argument perhaps you can adapt the following for your use case:
from transformers import AutoModelWithLMHead, AutoTokenizer, AutoConfig, TextGenerationPipeline
model_ckpt= "gpt2"
# override default parameters here, eg output the hidden states
config = AutoConfig.from_pretrained(model_ckpt, output_hidden_states=True)
model = AutoModelWithLMHead.from_pretrained(model_ckpt, config=config)
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
pipe = TextGenerationPipeline(model=model, tokenizer=tokenizer)
You might not even need the TextGenerationPipeline
class since I think that this is equivalent to instantiating the pipeline as follows:
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer)