### Is there an existing issue for this?
- [X] I have searched the existing issโฆues and checked the recent builds/commits of both this extension and the webui
### What happened?
Runtime exception pop up on model training. It is breaking the execution:
RuntimeError: Some tensors share memory, this will lead to duplicate memory on disk and potential differences when loading them again.
More info in Console Logs
### Steps to reproduce the problem
1. Create a model based on realisticVisionV20_v20NoVAE
2. Goto Concepts, put Dataset Directory, instance and class prompts
3. Press 'Training Wizard: (Person)'
4. Press 'Train'
### Commit and libraries
Initializing Dreambooth
Dreambooth revision: b396af26b7906aa82a29d8847e756396cb2c28fb
Successfully installed accelerate-0.19.0 fastapi-0.94.1 gitpython-3.1.31 transformers-4.29.2
Does your project take forever to startup?
Repetitive dependency installation may be the reason.
Automatic1111's base project sets strict requirements on outdated dependencies.
If an extension is using a newer version, the dependency is uninstalled and reinstalled twice every startup.
[+] xformers version 0.0.17 installed.
[+] torch version 2.0.1+cu118 installed.
[+] torchvision version 0.15.2+cu118 installed.
[+] accelerate version 0.19.0 installed.
[+] diffusers version 0.16.1 installed.
[+] transformers version 4.29.2 installed.
[+] bitsandbytes version 0.35.4 installed.
Launching Web UI with arguments: --xformers
Loading weights [c0d1994c73] from D:\Workspace\Stable diffusion\stable-diffusion-webui\models\Stable-diffusion\realisticVisionV20_v20NoVAE.safetensors
Creating model from config: D:\Workspace\Stable diffusion\stable-diffusion-webui\configs\v1-inference.yaml
LatentDiffusion: Running in eps-prediction mode
DiffusionWrapper has 859.52 M params.
### Command Line Arguments
```Shell
set COMMANDLINE_ARGS= --xformers
```
### Console logs
```Shell
Launching Web UI with arguments: --xformers
Loading weights [c0d1994c73] from D:\Workspace\Stable diffusion\stable-diffusion-webui\models\Stable-diffusion\realisticVisionV20_v20NoVAE.safetensors
Creating model from config: D:\Workspace\Stable diffusion\stable-diffusion-webui\configs\v1-inference.yaml
LatentDiffusion: Running in eps-prediction mode
DiffusionWrapper has 859.52 M params.
Textual inversion embeddings loaded(4): breasts, EasyNegative, small_tits, Style-Unshaved
Model loaded in 3.5s (load weights from disk: 0.2s, create model: 0.4s, apply weights to model: 0.7s, apply half(): 0.6s, move model to device: 0.6s, load textual inversion embeddings: 0.9s).
Applying optimization: xformers... done.
CUDA SETUP: Loading binary D:\Workspace\Stable diffusion\stable-diffusion-webui\venv\lib\site-packages\bitsandbytes\libbitsandbytes_cudaall.dll...
Running on local URL: http://127.0.0.1:7860
To create a public link, set `share=True` in `launch()`.
Startup time: 8.6s (import torch: 1.0s, import gradio: 0.8s, import ldm: 0.3s, other imports: 0.7s, load scripts: 4.9s, create ui: 0.7s, gradio launch: 0.1s).
Total images: 27
Largest prime: 3
Best factors: (3, 9)
Total VRAM: 12
Wizard results:<br>Num Epochs: 150<br>Num instance images per class image: 5
Exception loading config: Expecting value: line 1 column 1 (char 0)
Traceback (most recent call last):
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\extensions\sd_dreambooth_extension\dreambooth\dataclasses\db_config.py", line 411, in from_file
config_dict = json.load(openfile)
File "C:\Users\adist\AppData\Local\Programs\Python\Python310\lib\json\__init__.py", line 293, in load
return loads(fp.read(),
File "C:\Users\adist\AppData\Local\Programs\Python\Python310\lib\json\__init__.py", line 346, in loads
return _default_decoder.decode(s)
File "C:\Users\adist\AppData\Local\Programs\Python\Python310\lib\json\decoder.py", line 337, in decode
obj, end = self.raw_decode(s, idx=_w(s, 0).end())
File "C:\Users\adist\AppData\Local\Programs\Python\Python310\lib\json\decoder.py", line 355, in raw_decode
raise JSONDecodeError("Expecting value", s, err.value) from None
json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0)
Duration: 00:00:00
Error completing request
Arguments: ('test.model', 'Native Diffusers') {}
Traceback (most recent call last):
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\extensions\sd_dreambooth_extension\dreambooth\utils\utils.py", line 200, in f
res = func(*args, **kwargs)
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\extensions\sd_dreambooth_extension\dreambooth\ui_functions.py", line 683, in start_training
if config.pretrained_vae_name_or_path == "":
AttributeError: 'NoneType' object has no attribute 'pretrained_vae_name_or_path'
Traceback (most recent call last):
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\venv\lib\site-packages\gradio\routes.py", line 422, in run_predict
output = await app.get_blocks().process_api(
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\venv\lib\site-packages\gradio\blocks.py", line 1326, in process_api
data = self.postprocess_data(fn_index, result["prediction"], state)
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\venv\lib\site-packages\gradio\blocks.py", line 1229, in postprocess_data
self.validate_outputs(fn_index, predictions) # type: ignore
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\venv\lib\site-packages\gradio\blocks.py", line 1204, in validate_outputs
raise ValueError(
ValueError: An event handler (f) didn't receive enough output values (needed: 5, received: 3).
Wanted outputs:
[dropdown, html, html, gallery, html]
Received outputs:
[None, "", "<div class='error'>AttributeError: 'NoneType' object has no attribute 'pretrained_vae_name_or_path'</div>"]
Wizard results:<br>Num Epochs: 150<br>Num instance images per class image: 5
Initializing dreambooth training...
Pre-processing images: classifiers_0: : 54it [00:00, 558.49it/s]
We need a total of 135 class images.: : 54it [00:00, 564.32it/s] | 0/27 [00:00<?, ?it/s]
Generating 135 class images for training...
Using scheduler: DEISMultistep:: 0%| | 0/135 [00:00<?, ?it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:05<00:00, 7.16it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.85it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:02<00:00, 14.19it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:02<00:00, 14.37it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:02<00:00, 14.11it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.66it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.65it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.82it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.44it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.80it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.64it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.88it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.52it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.77it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.69it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.40it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.51it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.36it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.13it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 10.72it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.94it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.67it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.08it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.40it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.63it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.00it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.00it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.30it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.49it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.44it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.08it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.42it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.33it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.48it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.37it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.55it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.49it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.08it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.10it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.05it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.27it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.35it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.43it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.30it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.56it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.57it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.42it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.49it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.32it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.52it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.44it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.07it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.59it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.65it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.57it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.52it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.35it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.51it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.38it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.34it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.51it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.43it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.42it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.39it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.48it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.41it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.43it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.40it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.41it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.31it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.44it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.38it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.47it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.33it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.65it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.63it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.45it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.55it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.58it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.31it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.50it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.57it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.44it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.32it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.56it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.52it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.27it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.62it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.07it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.46it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.79it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.65it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:02<00:00, 13.48it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:02<00:00, 14.37it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 10.69it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.92it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.82it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.38it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 10.21it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.29it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.15it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.59it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.13it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.36it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.22it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.30it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.45it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.37it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.35it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.56it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.58it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.38it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.29it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.68it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.00it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.15it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.23it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.88it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.71it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.15it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.59it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.60it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.51it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.95it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.16it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.17it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.15it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.26it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 12.26it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.49it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.74it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.43it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.24it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.60it/s]
100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 40/40 [00:03<00:00, 11.54it/s]
Generating class images 134/135:: 99%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 134/135 [00:00<00:00, 134041.67it/s]Restored system models.s 135/135:: 100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 135/135 [00:00<00:00, 134945.43it/s]
Generated 135 new class images.
Enabling xformers memory efficient attention for unet | 0/135 [00:00<?, ?it/s]
Enabling xformers memory efficient attention for unet
Found 135 reg images.%| | 0/135 [00:00<?, ?it/s]
Preparing dataset...
Init dataset!
Preparing Dataset (Without Caching)
Bucket 0 (512, 512, 0) - Instance Images: 27 | Class Images: 135 | Max Examples/batch: 54
Total Buckets 1 - Instance Images: 27 | Class Images: 135 | Max Examples/batch: 54
Total images / batch: 54, total examples: 54โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 162/162 [00:00<00:00, 162011.74it/s]
Total dataset length (steps): 54
Initializing bucket counter!
Steps: 3%| | 270/8100 [05:33<1:13:52, 1.77it/s, inst_loss=0, loss=0.00184, lr=2e-6, prior_loss=0.00245, vram=10.3]Exception saving sample.%| | 0/3 [00:00<?, ?it/s]
Traceback (most recent call last):
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\extensions\sd_dreambooth_extension\dreambooth\train_dreambooth.py", line 1032, in save_weights
s_image = s_pipeline(
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\venv\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\venv\lib\site-packages\diffusers\pipelines\stable_diffusion\pipeline_stable_diffusion.py", line 645, in __call__
prompt_embeds = self._encode_prompt(
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\venv\lib\site-packages\diffusers\pipelines\stable_diffusion\pipeline_stable_diffusion.py", line 357, in _encode_prompt
prompt_embeds = self.text_encoder(
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\venv\lib\site-packages\accelerate\hooks.py", line 165, in new_forward
output = old_forward(*args, **kwargs)
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\venv\lib\site-packages\transformers\models\clip\modeling_clip.py", line 816, in forward
return self.text_model(
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\venv\lib\site-packages\transformers\models\clip\modeling_clip.py", line 717, in forward
causal_attention_mask = self._build_causal_attention_mask(
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\venv\lib\site-packages\transformers\models\clip\modeling_clip.py", line 760, in _build_causal_attention_mask
mask.triu_(1) # zero out the lower diagonal
RuntimeError: "triu_tril_cuda_template" not implemented for 'BFloat16'
Model name: test.model
Saving D:\Workspace\Stable diffusion\stable-diffusion-webui\models\dreambooth\test.model\logging\loss_plot_0.png
Saving D:\Workspace\Stable diffusion\stable-diffusion-webui\models\dreambooth\test.model\logging\ram_plot_0.png
Cleanup log parse.
Steps: 7%|โ | 540/8100 [12:48<1:14:41, 1.69it/s, inst_loss=0, loss=0.12, lr=2e-6, prior_loss=0.16, vram=10.2]Traceback (most recent call last):
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\extensions\sd_dreambooth_extension\dreambooth\ui_functions.py", line 729, in start_training
result = main(class_gen_method=class_gen_method)
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\extensions\sd_dreambooth_extension\dreambooth\train_dreambooth.py", line 1546, in main
return inner_loop()
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\extensions\sd_dreambooth_extension\dreambooth\memory.py", line 119, in decorator
return function(batch_size, grad_size, prof, *args, **kwargs)
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\extensions\sd_dreambooth_extension\dreambooth\train_dreambooth.py", line 1500, in inner_loop
check_save(True)
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\extensions\sd_dreambooth_extension\dreambooth\train_dreambooth.py", line 794, in check_save
save_weights(
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\extensions\sd_dreambooth_extension\dreambooth\train_dreambooth.py", line 970, in save_weights
s_pipeline.save_pretrained(tmp_dir, safe_serialization=True)
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\venv\lib\site-packages\diffusers\pipelines\pipeline_utils.py", line 607, in save_pretrained
save_method(os.path.join(save_directory, pipeline_component_name), **save_kwargs)
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\venv\lib\site-packages\diffusers\models\modeling_utils.py", line 319, in save_pretrained
safetensors.torch.save_file(
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\venv\lib\site-packages\safetensors\torch.py", line 232, in save_file
serialize_file(_flatten(tensors), filename, metadata=metadata)
File "D:\Workspace\Stable diffusion\stable-diffusion-webui\venv\lib\site-packages\safetensors\torch.py", line 394, in _flatten
raise RuntimeError(
RuntimeError:
Some tensors share memory, this will lead to duplicate memory on disk and potential differences when loading them again: [{'decoder.conv_in.weight', 'encoder.down_blocks.2.resnets.0.conv1.bias', 'decoder.up_blocks.2.resnets.2.conv2.weight', 'encoder.down_blocks.1.resnets.1.conv2.weight', 'decoder.up_blocks.1.resnets.1.conv1.weight', 'encoder.conv_out.bias', 'encoder.down_blocks.0.resnets.1.norm2.weight', 'decoder.up_blocks.1.resnets.0.norm2.weight', 'decoder.up_blocks.2.resnets.0.norm1.weight', 'decoder.conv_in.bias', 'encoder.down_blocks.2.resnets.0.conv1.weight', 'decoder.up_blocks.2.resnets.0.conv2.weight', 'decoder.up_blocks.2.resnets.2.norm1.weight', 'decoder.up_blocks.3.resnets.1.conv2.weight', 'encoder.mid_block.attentions.0.group_norm.bias', 'decoder.up_blocks.0.resnets.0.norm1.bias', 'decoder.up_blocks.0.resnets.1.conv2.bias', 'decoder.up_blocks.1.resnets.0.conv1.weight', 'decoder.mid_block.resnets.0.norm1.weight', 'decoder.up_blocks.0.resnets.1.norm2.weight', 'encoder.down_blocks.1.resnets.1.norm2.weight', 'encoder.down_blocks.1.resnets.1.norm2.bias', 'encoder.down_blocks.2.resnets.0.conv2.bias', 'encoder.mid_block.resnets.0.conv1.bias', 'encoder.down_blocks.0.resnets.0.conv1.weight', 'decoder.up_blocks.0.resnets.2.conv2.bias', 'decoder.up_blocks.1.resnets.0.conv2.bias', 'decoder.up_blocks.2.upsamplers.0.conv.weight', 'decoder.up_blocks.0.resnets.2.conv2.weight', 'encoder.down_blocks.0.resnets.1.norm2.bias', 'decoder.up_blocks.3.resnets.2.norm1.weight', 'decoder.mid_block.resnets.1.norm2.weight', 'decoder.up_blocks.3.resnets.2.conv1.bias', 'decoder.mid_block.attentions.0.query.bias', 'encoder.down_blocks.1.resnets.0.conv2.weight', 'decoder.up_blocks.3.resnets.1.norm1.weight', 'decoder.up_blocks.0.resnets.1.norm1.bias', 'encoder.down_blocks.0.downsamplers.0.conv.bias', 'post_quant_conv.bias', 'encoder.mid_block.resnets.0.norm2.bias', 'decoder.up_blocks.0.resnets.2.norm1.weight', 'decoder.up_blocks.2.resnets.2.conv2.bias', 'decoder.mid_block.attentions.0.key.bias', 'decoder.up_blocks.3.resnets.0.conv2.bias', 'encoder.mid_block.attentions.0.proj_attn.weight', 'encoder.down_blocks.0.resnets.0.norm2.weight', 'encoder.mid_block.resnets.0.conv1.weight', 'encoder.mid_block.resnets.1.norm1.bias', 'encoder.down_blocks.0.resnets.1.norm1.weight', 'encoder.conv_norm_out.weight', 'decoder.up_blocks.2.resnets.1.conv1.weight', 'encoder.mid_block.resnets.1.norm1.weight', 'encoder.down_blocks.1.resnets.1.conv2.bias', 'decoder.up_blocks.1.resnets.2.conv2.weight', 'encoder.down_blocks.1.resnets.0.norm1.weight', 'encoder.down_blocks.2.resnets.1.conv1.weight', 'decoder.up_blocks.3.resnets.0.conv2.weight', 'encoder.down_blocks.1.downsamplers.0.conv.weight', 'encoder.down_blocks.2.resnets.0.conv_shortcut.weight', 'encoder.down_blocks.2.resnets.0.norm2.bias', 'encoder.mid_block.attentions.0.proj_attn.bias', 'decoder.up_blocks.0.resnets.0.conv2.weight', 'decoder.up_blocks.2.upsamplers.0.conv.bias', 'decoder.up_blocks.3.resnets.0.conv_shortcut.weight', 'decoder.mid_block.resnets.0.conv2.weight', 'encoder.down_blocks.3.resnets.0.conv2.bias', 'decoder.up_blocks.3.resnets.2.norm2.weight', 'encoder.down_blocks.1.resnets.0.conv2.bias', 'encoder.down_blocks.2.resnets.0.norm2.weight', 'encoder.down_blocks.2.downsamplers.0.conv.weight', 'encoder.mid_block.attentions.0.value.weight', 'decoder.up_blocks.2.resnets.0.conv1.bias', 'decoder.up_blocks.3.resnets.1.norm2.weight', 'encoder.down_blocks.3.resnets.1.conv1.bias', 'encoder.down_blocks.1.resnets.0.conv_shortcut.weight', 'encoder.down_blocks.3.resnets.0.norm2.weight', 'encoder.mid_block.resnets.0.norm1.weight', 'decoder.up_blocks.1.resnets.0.norm2.bias', 'decoder.up_blocks.0.upsamplers.0.conv.bias', 'decoder.up_blocks.0.resnets.1.conv1.weight', 'decoder.up_blocks.3.resnets.0.conv1.weight', 'decoder.up_blocks.3.resnets.1.norm2.bias', 'encoder.down_blocks.0.resnets.0.norm2.bias', 'decoder.mid_block.attentions.0.value.bias', 'encoder.down_blocks.3.resnets.0.norm2.bias', 'decoder.up_blocks.0.resnets.0.conv1.weight', 'decoder.up_blocks.1.resnets.1.conv1.bias', 'decoder.up_blocks.1.resnets.2.norm2.weight', 'encoder.down_blocks.2.resnets.1.norm1.bias', 'encoder.down_blocks.1.resnets.1.norm1.weight', 'encoder.down_blocks.2.resnets.1.norm2.weight', 'encoder.down_blocks.1.downsamplers.0.conv.bias', 'encoder.conv_in.weight', 'decoder.up_blocks.2.resnets.0.conv_shortcut.bias', 'decoder.mid_block.attentions.0.query.weight', 'decoder.up_blocks.3.resnets.2.conv2.bias', 'quant_conv.bias', 'encoder.down_blocks.1.resnets.1.norm1.bias', 'decoder.up_blocks.2.resnets.1.norm2.bias', 'decoder.mid_block.resnets.0.norm2.weight', 'decoder.up_blocks.2.resnets.1.norm1.bias', 'encoder.conv_out.weight', 'decoder.up_blocks.2.resnets.0.conv1.weight', 'post_quant_conv.weight', 'encoder.down_blocks.3.resnets.1.norm2.bias', 'decoder.up_blocks.2.resnets.1.norm2.weight', 'decoder.mid_block.resnets.0.conv2.bias', 'encoder.down_blocks.1.resnets.1.conv1.bias', 'encoder.down_blocks.3.resnets.0.conv2.weight', 'decoder.up_blocks.3.resnets.1.norm1.bias', 'encoder.down_blocks.2.resnets.0.norm1.bias', 'decoder.up_blocks.1.resnets.2.conv1.weight', 'decoder.up_blocks.1.resnets.2.conv2.bias', 'encoder.down_blocks.0.resnets.0.conv2.bias', 'decoder.up_blocks.2.resnets.2.conv1.weight', 'encoder.down_blocks.0.downsamplers.0.conv.weight', 'encoder.down_blocks.0.resnets.0.norm1.bias', 'encoder.down_blocks.2.resnets.1.norm2.bias', 'decoder.up_blocks.3.resnets.2.conv2.weight', 'decoder.mid_block.attentions.0.proj_attn.weight', 'encoder.down_blocks.0.resnets.1.conv2.bias', 'encoder.down_blocks.3.resnets.1.norm1.bias', 'decoder.conv_norm_out.bias', 'encoder.down_blocks.1.resnets.1.conv1.weight', 'decoder.mid_block.attentions.0.group_norm.bias', 'encoder.conv_norm_out.bias', 'encoder.down_blocks.3.resnets.1.norm1.weight', 'encoder.mid_block.resnets.1.norm2.weight', 'encoder.down_blocks.0.resnets.1.norm1.bias', 'encoder.down_blocks.0.resnets.1.conv2.weight', 'decoder.up_blocks.3.resnets.2.conv1.weight', 'encoder.mid_block.resnets.1.conv1.bias', 'decoder.mid_block.resnets.0.conv1.weight', 'decoder.conv_out.bias', 'decoder.up_blocks.0.resnets.2.conv1.weight', 'decoder.up_blocks.2.resnets.1.conv2.bias', 'encoder.mid_block.attentions.0.group_norm.weight', 'decoder.up_blocks.0.resnets.0.norm2.weight', 'decoder.conv_out.weight', 'encoder.down_blocks.0.resnets.1.conv1.weight', 'decoder.up_blocks.2.resnets.0.conv2.bias', 'decoder.up_blocks.1.resnets.2.conv1.bias', 'decoder.up_blocks.0.resnets.1.conv2.weight', 'encoder.down_blocks.1.resnets.0.norm2.bias', 'decoder.up_blocks.0.resnets.1.norm2.bias', 'decoder.up_blocks.3.resnets.0.norm2.weight', 'encoder.down_blocks.1.resnets.0.conv1.weight', 'encoder.mid_block.attentions.0.value.bias', 'decoder.up_blocks.0.resnets.0.norm2.bias', 'decoder.up_blocks.0.resnets.2.norm2.bias', 'decoder.up_blocks.2.resnets.2.norm2.bias', 'decoder.mid_block.attentions.0.value.weight', 'decoder.mid_block.resnets.1.conv1.bias', 'encoder.mid_block.attentions.0.query.bias', 'decoder.up_blocks.0.resnets.1.conv1.bias', 'decoder.up_blocks.3.resnets.1.conv2.bias', 'encoder.down_blocks.3.resnets.1.conv2.bias', 'decoder.up_blocks.1.resnets.0.norm1.weight', 'encoder.down_blocks.1.resnets.0.norm2.weight', 'decoder.up_blocks.2.resnets.0.norm2.bias', 'decoder.up_blocks.0.resnets.2.norm2.weight', 'decoder.up_blocks.1.resnets.1.norm1.bias', 'decoder.mid_block.resnets.1.norm2.bias', 'encoder.mid_block.attentions.0.query.weight', 'decoder.up_blocks.0.resnets.0.conv1.bias', 'decoder.up_blocks.1.resnets.0.conv1.bias', 'encoder.down_blocks.0.resnets.1.conv1.bias', 'decoder.up_blocks.2.resnets.2.norm2.weight', 'decoder.up_blocks.1.upsamplers.0.conv.bias', 'decoder.mid_block.attentions.0.group_norm.weight', 'decoder.mid_block.attentions.0.proj_attn.bias', 'decoder.mid_block.attentions.0.key.weight', 'decoder.up_blocks.0.resnets.0.norm1.weight', 'decoder.up_blocks.2.resnets.0.conv_shortcut.weight', 'encoder.mid_block.attentions.0.key.bias', 'decoder.up_blocks.1.resnets.0.conv2.weight', 'decoder.conv_norm_out.weight', 'encoder.down_blocks.2.resnets.0.norm1.weight', 'encoder.down_blocks.1.resnets.0.conv1.bias', 'decoder.up_blocks.2.resnets.0.norm2.weight', 'decoder.up_blocks.3.resnets.0.conv1.bias', 'decoder.up_blocks.1.upsamplers.0.conv.weight', 'encoder.down_blocks.2.downsamplers.0.conv.bias', 'encoder.down_blocks.1.resnets.0.norm1.bias', 'encoder.mid_block.resnets.1.norm2.bias', 'decoder.up_blocks.3.resnets.1.conv1.weight', 'encoder.mid_block.resnets.0.conv2.weight', 'decoder.up_blocks.0.resnets.2.conv1.bias', 'encoder.down_blocks.3.resnets.0.norm1.weight', 'decoder.mid_block.resnets.0.norm2.bias', 'quant_conv.weight', 'decoder.mid_block.resnets.0.conv1.bias', 'decoder.up_blocks.0.resnets.1.norm1.weight', 'encoder.down_blocks.0.resnets.0.conv2.weight', 'decoder.up_blocks.1.resnets.1.norm1.weight', 'encoder.down_blocks.3.resnets.1.conv1.weight', 'encoder.mid_block.resnets.0.norm2.weight', 'decoder.up_blocks.1.resnets.1.norm2.weight', 'decoder.up_blocks.3.resnets.2.norm2.bias', 'decoder.up_blocks.1.resnets.2.norm1.bias', 'encoder.down_blocks.2.resnets.0.conv_shortcut.bias', 'encoder.mid_block.attentions.0.key.weight', 'decoder.up_blocks.1.resnets.2.norm2.bias', 'encoder.mid_block.resnets.1.conv1.weight', 'decoder.up_blocks.0.resnets.2.norm1.bias', 'decoder.up_blocks.2.resnets.0.norm1.bias', 'decoder.mid_block.resnets.0.norm1.bias', 'encoder.mid_block.resnets.1.conv2.weight', 'encoder.mid_block.resnets.0.norm1.bias', 'decoder.up_blocks.2.resnets.1.norm1.weight', 'decoder.up_blocks.3.resnets.1.conv1.bias', 'decoder.up_blocks.2.resnets.1.conv2.weight', 'decoder.mid_block.resnets.1.norm1.weight', 'decoder.up_blocks.1.resnets.1.conv2.bias', 'encoder.down_blocks.3.resnets.0.conv1.bias', 'decoder.up_blocks.1.resnets.2.norm1.weight', 'encoder.down_blocks.3.resnets.0.norm1.bias', 'encoder.down_blocks.3.resnets.0.conv1.weight', 'decoder.mid_block.resnets.1.norm1.bias', 'encoder.down_blocks.2.resnets.1.conv2.bias', 'decoder.up_blocks.2.resnets.2.norm1.bias', 'decoder.up_blocks.3.resnets.0.norm1.bias', 'decoder.mid_block.resnets.1.conv2.bias', 'encoder.mid_block.resnets.0.conv2.bias', 'encoder.mid_block.resnets.1.conv2.bias', 'encoder.down_blocks.0.resnets.0.norm1.weight', 'encoder.down_blocks.3.resnets.1.conv2.weight', 'encoder.down_blocks.2.resnets.0.conv2.weight', 'decoder.up_blocks.0.upsamplers.0.conv.weight', 'decoder.up_blocks.2.resnets.1.conv1.bias', 'decoder.up_blocks.3.resnets.0.norm1.weight', 'decoder.up_blocks.3.resnets.0.norm2.bias', 'encoder.conv_in.bias', 'encoder.down_blocks.1.resnets.0.conv_shortcut.bias', 'decoder.up_blocks.2.resnets.2.conv1.bias', 'decoder.up_blocks.1.resnets.0.norm1.bias', 'decoder.up_blocks.0.resnets.0.conv2.bias', 'decoder.up_blocks.3.resnets.2.norm1.bias', 'decoder.mid_block.resnets.1.conv1.weight', 'decoder.up_blocks.1.resnets.1.conv2.weight', 'encoder.down_blocks.0.resnets.0.conv1.bias', 'encoder.down_blocks.2.resnets.1.conv2.weight', 'encoder.down_blocks.2.resnets.1.norm1.weight', 'decoder.up_blocks.3.resnets.0.conv_shortcut.bias', 'decoder.mid_block.resnets.1.conv2.weight', 'encoder.down_blocks.3.resnets.1.norm2.weight', 'encoder.down_blocks.2.resnets.1.conv1.bias', 'decoder.up_blocks.1.resnets.1.norm2.bias'}].
A potential way to correctly save your model is to use `save_model`.
More information at https://huggingface.co/docs/safetensors/torch_shared_tensors
Steps: 7%|โ | 540/8100 [12:49<2:59:32, 1.42s/it, inst_loss=0, loss=0.12, lr=2e-6, prior_loss=0.16, vram=10.2]
Saving weights/samples...: 0%| | 0/3 [00:01<?, ?it/s]
Restored system models.
Duration: 00:22:20
```
### Additional information
Windows 11,
venv "D:\Workspace\Stable diffusion\stable-diffusion-webui\venv\Scripts\Python.exe"
Python 3.10.6 (tags/v3.10.6:9c7b4bd, Aug 1 2022, 21:53:49) [MSC v.1932 64 bit (AMD64)]
Version: v1.3.2