im not able to figure out what im doing wrong here
class IngenxPreTokenizer:
def __init__(self):
super().__init__()
self.base_tokenizer = IngenxTokenizer()
def pre_tokenize(self, pretok: PreTokenizedString):
processed = self.base_tokenizer.process_text(pretok)
normalized_tokens = []
current_offset = 0
for token in processed:
token_len = len(token)
normalized_tokens.append((
token,
(current_offset, current_offset + token_len)
))
current_offset += token_len + 1
pretok.tokens = normalized_tokens
return pretok
class IngenxTokenTrainer:
def __init__(self,df,size_dataset =240340,vocab_size=150000,min_freq = 5,batch_size=1000):
self.tokenizer = IngenxTokenizer()
self.df = df
self.size_dataset = size_dataset
self.vocab_size = vocab_size
self.min_freq = min_freq
self.batch_size=1000
self.special_tokens = ["<|unk|>","<|pad|>","</|eos|>",
"<|var|>","</|var|>","<|val|>","<|val|>",
"<|func|>","<|func|>","<|op|>","</|op|>"
]
self.training_corpus = self.preprare_dataset()
def preprare_dataset(self):
X2 = np.random.choice(len(self.df), size=self.size_dataset, replace=False)
examples = []
for i in X2:
# Convert to string and handle None/NaN values
problem = str(self.df.iloc[i]['problem']) if pd.notna(self.df.iloc[i]['problem']) else ""
solution = str(self.df.iloc[i]['solution']) if pd.notna(self.df.iloc[i]['solution']) else ""
example = f"{problem} {solution}".strip()
examples.append(example)
return examples
def get_training_corpus(self):
dataset = self.training_corpus
with tqdm(total=len(dataset), desc="Processing training corpus", unit="text") as pbar:
for text in dataset:
pbar.update(1)
yield text
def train_tokenizer(self):
tokenizer = Tokenizer(BPE())
tokenizer.pre_tokenizer = PreTokenizer.custom(IngenxPreTokenizer())
trainer = BpeTrainer(
vocab_size=self.vocab_size,
min_frequency=self.min_freq,
special_tokens=self.special_tokens
)
tokenizer.train_from_iterator(self.get_training_corpus(),trainer=trainer, length=len(self.training_corpus))
tokenizer.save("ingenx_tokenizewr.json")
return tokenizer
error
Exception Traceback (most recent call last)
<ipython-input-47-3f931020c7fd> in <cell line: 1>()
----> 1 a.train_tokenizer()
<ipython-input-44-3011da9bf75a> in train_tokenizer(self)
41 special_tokens=self.special_tokens
42 )
---> 43 tokenizer.train_from_iterator(self.get_training_corpus(),trainer=trainer, length=len(self.training_corpus))
44 tokenizer.save("ingenx_tokenizewr.json")
45 return tokenizer
Exception: TypeError: expected string or buffer