I’m trying to evaluate the model with 4 GPUs using trainer.evalute().
But when I run the script, It gives me this error.
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:3 and cuda:0!
I thought It might be a issue with the data loader, so I tried this code dataset.with_format("torch")
, but didn’t work.
Also, I found some posts on the internet saying trying using model.to("cuda")
, but that also didn’t work.
model = AutoModelForQuestionAnswering.from_pretrained(model_path, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_path)
tokenizer.pad_token = (
tokenizer.eos_token if tokenizer.eos_token else tokenizer.unk_token
)
def preprocess(examples):
questions = [q.strip() for q in examples["question"]]
tokenized_examples = tokenizer(
questions,
examples["context"],
truncation="only_second",
padding="max_length",
return_offsets_mapping=True,
max_length=2048, # 바꾸면 안됨!
)
tokenized_examples = tokenized_examples.to("cuda")
offset_mapping = tokenized_examples.pop("offset_mapping")
answers = examples["answers"]
start_positions = []
end_positions = []
for i, offset in enumerate(offset_mapping):
answer = answers[i]
start_char = answer["answer_start"][0]
end_char = answer["answer_start"][0] + len(answer["text"][0])
sequence_ids = tokenized_examples.sequence_ids(i)
# Find the start and end of the context
idx = 0
while sequence_ids[idx] != 1:
idx += 1
context_start = idx
while sequence_ids[idx] == 1:
idx += 1
context_end = idx - 1
# If the answer is not fully inside the context, label it (0, 0)
if offset[context_start][0] > end_char or offset[context_end][1] < start_char:
start_positions.append(0)
end_positions.append(0)
else:
# Otherwise it's the start and end token positions
idx = context_start
while idx <= context_end and offset[idx][0] <= start_char:
idx += 1
start_positions.append(idx - 1)
idx = context_end
while idx >= context_start and offset[idx][1] >= end_char:
idx -= 1
end_positions.append(idx + 1)
tokenized_examples["start_positions"] = start_positions
tokenized_examples["end_positions"] = end_positions
return tokenized_examples
dataset = load_dataset("klue", "mrc", split="validation[:10]")
eval_dataset = dataset.map(
preprocess, batched=True, remove_columns=dataset.column_names
)
# Define the evaluation metrics (Exact Match and F1 Score)
em_metric = evaluate.load("exact_match")
f1_metric = evaluate.load("f1")
# Custom evaluation function
def compute_metrics(eval_pred):
print(eval_pred)
return {}
training_args = TrainingArguments(
output_dir="./results",
eval_strategy="epoch",
per_device_eval_batch_size=1,
save_strategy="no",
report_to="none",
dataloader_pin_memory=False,
)
# Trainer setup for evaluation
trainer = Trainer(
model=model,
args=training_args,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
processing_class=tokenizer,
)
# Run evaluation
eval_results = trainer.evaluate()
print(eval_results)