TypeError: __init__() missing 1 required positional argument: 'num_labels'

I finetune Bert on multicalssification task. The best model during training was saved in a directory called “checkpoint_10”.

Now I want to use it to get predictions on new data but I get this error ? why does it ask for a num_labels

emb_feature = tokenizer(x, padding="max_length", truncation=True, max_length=512)

model ='./checkpoint_10'
model = XXXForSequenceClassification.from_pretrained(model, num_labels=3)
# Define test trainer
test_trainer = Trainer(model) 
# Make prediction
raw_pred, _, _ = test_trainer.predict(emb_feature) # list of dict with "input_id, attention_mask, token_input_ids"


File "/aitements/classifying.py", line 355, in <module>
    pred = predict(test, test_model)
  File "/aitements/classifying.py", line 219, in predict
    model =XXXForSequenceClassification.from_pretrained(model, num_labels=3)
  File "/uw/.conda/envs/bert/lib/python3.9/site-packages/transformers/modeling_utils.py", line 1179, in from_pretrained
    model = cls(config, *model_args, **model_kwargs)
TypeError: __init__() missing 1 required positional argument: 'num_labels'

this is the beguinning of my sequenceclassification task :

class XXXForSequenceClassification(XXXModel):
	xxx Model for Classification Tasks.

	def __init__(self, config, num_labels, freeze_encoder=False):

		@param    XXXBert: a XXXBertModel object
		@param    classifier: a torch.nn.Module classifier
		@param    freeze_encoder (bool): Set `False` to fine-tune the XXXBERT model

		# instantiate the parent class XXXbertModel
		# Specify hidden size of FB hidden size of our classifier, and number of labels

		# instantiate num. of classes
		self.num_labels = num_labels
		# instantiate and load a pretrained XXXbertModel 
		self.encoder = XXXbertModel.from_pretrained(PRE_TRAINED_MODEL_NAME)