Hi, I have to modify a HF model from my repository changing the forward function, and I do it defining a new class ModifiedModel which takes the original model and defines new forward, and it works well.
The problem is that I don’t understand how to upload completely the new model on a new repo, because if I inherit the push_to_hub method from the child model it pushes only the child, so the pushed model is the original one, how can I push the model in order to have online all the new behaviour?
i hope to be clear, thanks…
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch.nn.functional as F
def reshape_logits(logits):
sorted_indices = torch.argsort(logits, descending=True) # Ordina i token per probabilità
original_probs = torch.softmax(logits, dim=-1) # Converti logits in probabilità
reshaped_probs = torch.zeros_like(original_probs)
for i, idx in enumerate(sorted_indices):
reshaped_probs[idx] = 1 / (2 ** (i + 1)) # i+1 per partire da 1
reshaped_probs = reshaped_probs / reshaped_probs.sum() # Riscala a sommare 1
reshaped_logits = torch.log(reshaped_probs + 1e-12) # Converti di nuovo in logits
return reshaped_logits
class ModifiedModel(torch.nn.Module):
def __init__(self, base_model):
super().__init__()
self.model = base_model
def forward(self, *args, **kwargs):
result = self.model.forward(*args, **kwargs)
last_token_logits = result.logits[0, -1, :]
probs = F.softmax(last_token_logits, dim=-1)
reshaped_probs = torch.zeros_like(probs)
sorted_indices = torch.argsort(probs, descending=True)
for i, idx in enumerate(sorted_indices):
reshaped_probs[idx] = 1 / (2 ** (i + 1)) # i+1 per partire da 1
reshaped_probs = reshaped_probs / reshaped_probs.sum() # Riscala a sommare 1
reshaped_logits = torch.log(reshaped_probs + 1e-12)
result.logits = reshaped_logits.unsqueeze(0).unsqueeze(0)
return result
# Modello originale e nome per il modello modificato
original_model_name = "dgambettavuw/M_gen5_run0_llama2-7b_wiki_doc1000_real64_synt64_vuw"
# Carica il modello e il tokenizer
model = AutoModelForCausalLM.from_pretrained(original_model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(original_model_name)
modified_model = ModifiedModel(model)