Using grid search in `trainer.hyperparameter_search`

I am using optuna as the backend in trainer.hyperparameter_search(). I would like to use grid search in this method.

Even though optuna does support grid search (see optuna doc), I could not see in how do I implement this with trainer.hyperparameter_search() as it seems the method used here defaults to some complicated strategy and there is no way to change this default behavior.

I know I could set several categorical values like following but this will still use default search algorithm rather than enumerating all possible combinations (there should be 3\times 3=9 parameters to try). So even if I set n_trail=9, the search algorithm might not look at all 9 combinations.

def hp_space_optuna(trial):
    return {
        "learning_rate": trial.suggest_categorical("learning_rate", [1e-5, 3e-5, 5e-5]),
        "num_train_epochs": trial.suggest_int("num_train_epochs", 1, 3),
    }

best_trail = trainer.hyperparameter_search(hp_space=hp_space_optuna,
                                           direction="maximize", 
                                           backend="optuna", 
                                           n_trials=9)

I am wondering how do I directly use grid search in trainer.hyperparameter_search().