ValueError: expected sequence of length 133 at dim 1 (got 80) encountered when trying to retrieve first hidden state

Hello ,

I recently install transformers version 4.8.0 and I am trying to retrieve the first hidden state of each sentence of my dataset. Somehow I encountering the error above and I cannot find how to solve. I am not so so familiar with torch tensor but by observing the stackstrace I think that’s where the error commes. My original corpus is made up of 50000 sentences in dataframe but for confirming the function runs, I tested on a small sample of 35 sentences (0 to 34 index ).

Find below the function:

    0     si j’ai un problème, comment je remonte l’info...
    1     des agents de maintenance ? Oui, oui. Enfin… I...
    2     Il faudrait des tiroirs qui sortent / rentrent...
    3     ROI, 5 à 10 ans. Si l’énergie explose, ça devi...
    4     Je ne vois pas cela en conception de cuisine, ... 

    path_to_lge = "flaubert/flaubert_small_cased"
    flaubert = FlaubertModel.from_pretrained(path_to_lge)
    flaubert_tokenizer = FlaubertTokenizer.from_pretrained(path_to_lge, do_lowercase=False)
    input_ids = []
    attention_masks = []

    for sent in texte: #  class pandas series core
        encoded_sent = flaubert_tokenizer.encode_plus(sent, add_special_tokens=True, truncation=True, padding=True, return_attention_mask=True)

        # Add the outputs to the lists

        # Convert lists to tensors

    print("len", len(input_ids))

    input_ids = torch.tensor(input_ids)
    attention_mask = torch.tensor(attention_masks)

    hidden_state = flaubert(input_ids=input_ids, attention_mask=attention_mask)

    # Extract the last hidden state of the token `[CLS]` for classification task
    last_hidden_state_cls = outputs[0][:, 0, :]

stack trace :

  ---Filename in processed................ corpus_ix_originel_FMC_train
etiquette  : [2 1 0]
Embeddings bert model used.................... :  small_cased

Some weights of the model checkpoint at flaubert/flaubert_small_cased were not used when initializing FlaubertModel: ['pred_layer.proj.weight', 'pred_layer.proj.bias']
- This IS expected if you are initializing FlaubertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing FlaubertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
<class 'numpy.ndarray'>
len  = 34 sentences (from 0 to 34) 
Traceback (most recent call last):
  File "/16uw/test/expe_5/train/", line 63, in <module>
  File "/16uw/test/expe_5/train/", line 46, in main
    dic_acc, dic_report, dic_cm, s = cross_validation(data_train, data_label_train, models_list, name, language_model_dir)
  File "/16uw/test/expe_5/train/../traitements/", line 197, in cross_validation
    features, s = get_flaubert_layer(features, lge_model)
  File "16uw/test/expe_5/train/../traitements/", line 107, in get_flaubert_layer
    input_ids = torch.tensor(input_ids)
ValueError: expected sequence of length 133 at dim 1 (got 80)

Hope this element may help you understand my problem