Here is the code:
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen2-7B-Instruct",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-7B-Instruct")
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
here is the error:
Traceback (most recent call last):
File "C:\Users\SunDay\Desktop\NelzGPT\main.py", line 4, in <module>
model = AutoModelForCausalLM.from_pretrained(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\SunDay\miniconda3\Lib\site-packages\transformers\models\auto\auto_factory.py", line 564, in from_pretrained
return model_class.from_pretrained(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\SunDay\miniconda3\Lib\site-packages\transformers\modeling_utils.py", line 4015, in from_pretrained
dispatch_model(model, **device_map_kwargs)
File "C:\Users\SunDay\miniconda3\Lib\site-packages\accelerate\big_modeling.py", line 496, in dispatch_model
raise ValueError(
ValueError: You are trying to offload the whole model to the disk. Please use the `disk_offload` function instead.
what to do?