I am using the Language Interpretability Toolkit (LIT) to load and analyze the ‘bert-base-german-cased’ model that I pre-trained on an NER task with HuggingFace.
However, when I’m starting the LIT script with the path to my pre-trained model passed to it, it fails to initialize the weights and tells me:
modeling_utils.py:648] loading weights file bert_remote/examples/token-classification/Data/Models/results_21_03_04_cleaned_annotations/04.03._8_16_5e-5_cleaned_annotations/04-03-2021 (15.22.23)/pytorch_model.bin
modeling_utils.py:739] Weights of BertForTokenClassification not initialized from pretrained model: ['bert.pooler.dense.weight', 'bert.pooler.dense.bias']
modeling_utils.py:745] Weights from pretrained model not used in BertForTokenClassification: ['bert.embeddings.position_ids']
It then simply uses the bert-base-german-cased
version of BERT, which of course doesn’t have my custom labels and thus fails to predict anything. I think it might have to do with PyTorch or HuggingFace, but I can’t find the error.
If relevant, here is how I load my dataset into CoNLL 2003 format (modification of the dataloader scripts):
def __init__(self):
# Read ConLL Test Files
self._examples = []
data_path = "lit_remote/lit_nlp/examples/datasets/NER_Data"
with open(os.path.join(data_path, "test.txt"), "r", encoding="utf-8") as f:
lines = f.readlines()
for line in lines[:2000]:
if line != "\n":
token, label = line.split(" ")
self._examples.append({
'token': token,
'label': label,
})
else:
self._examples.append({
'token': "\n",
'label': "O"
})
def spec(self):
return {
'token': lit_types.Tokens(),
'label': lit_types.SequenceTags(align="token"),
}
And this is how I initialize the model and start the LIT server (modification of the simple_pytorch_demo.py
script):
def __init__(self, model_name_or_path):
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
model_name_or_path)
model_config = transformers.AutoConfig.from_pretrained(
model_name_or_path,
num_labels=15, # FIXME CHANGE
output_hidden_states=True,
output_attentions=True,
)
# This is a just a regular PyTorch model.
self.model = _from_pretrained(
transformers.AutoModelForTokenClassification,
model_name_or_path,
config=model_config)
self.model.eval()
## Some omitted snippets here
def input_spec(self) -> lit_types.Spec:
return {
"token": lit_types.Tokens(),
"label": lit_types.SequenceTags(align="token")
}
def output_spec(self) -> lit_types.Spec:
return {
"tokens": lit_types.Tokens(),
"probas": lit_types.MulticlassPreds(parent="label", vocab=self.LABELS),
"cls_emb": lit_types.Embeddings()
Anyone has an idea what the issue could be?