When you’re dealing with tokenization and need to mask whole words using the T5 tokenizer, one approach is to use the tokenized
output and identify the boundaries of each word in the tokenized sequence. The T5 tokenizer in the transformers
library provides a method called tokenize_plus
that can be helpful for this task.
Here’s a step-by-step guide on how you can create a custom data collator to mask whole words using the T5 tokenizer:
from transformers import T5Tokenizer
from transformers import DataCollatorForLanguageModeling
import torch
class CustomDataCollator(DataCollatorForLanguageModeling):
def init(self, tokenizer, mlm=True, mlm_probability=0.15):
super().init(tokenizer=tokenizer, mlm=mlm, mlm_probability=mlm_probability)
def mask_words(self, input_ids, labels):
masked_input_ids = input_ids.clone()
for i in range(len(labels)):
# Identify the start and end index of each word in the tokenized sequence
start_idx = (input_ids[i] == self.tokenizer.pad_token_id).nonzero().item() + 1
end_idx = len(input_ids[i]) - (input_ids[i][::-1] == self.tokenizer.pad_token_id).nonzero().item() - 1
# Mask the entire word
masked_input_ids[i, start_idx:end_idx] = self.tokenizer.mask_token_id
labels[i, start_idx:end_idx] = input_ids[i, start_idx:end_idx].clone()
return masked_input_ids, labels
def __call__(self, examples):
batch = self._tensorize_batch(examples)
input_ids, labels = self.mask_tokens(batch["input_ids"], batch["labels"])
# Additional step to mask whole words
masked_input_ids, masked_labels = self.mask_words(input_ids, labels)
return {"input_ids": masked_input_ids, "labels": masked_labels}
Example usage
tokenizer = T5Tokenizer.from_pretrained(“t5-small”)
data_collator = CustomDataCollator(tokenizer)
Dummy data for demonstration
dummy_data = [{“text”: “This is an example sentence.”}, {“text”: “Another example for testing.”}]
encoded_data = tokenizer(dummy_data, return_tensors=“pt”, padding=True)
Apply the custom data collator
masked_batch = data_collator(encoded_data[“input_ids”])
print(“Input IDs:”, masked_batch[“input_ids”])
print(“Labels:”, masked_batch[“labels”])