I’m writing this not just as a developer, but as someone who looks at the incredible progress we’ve made in AI and yet feels a persistent, nagging question: Are we aiming high enough? Or are we, in our pursuit of rapid advancements, starting to settle for less than what’s truly possible?
We stand on the shoulders of giants, with architectures like Transformers unlocking capabilities we once only dreamed of. The models are larger, the benchmarks are higher, and the applications are more widespread than ever. But amidst this flurry of activity, I can’t shake the feeling that we’re becoming too comfortable, too reliant on established paths, and perhaps too timid in our exploration of the truly unknown.
The Siren Song of Convenience and the Comfort of Black Boxes
It’s easy to fall into a rhythm: take the latest SOTA model, fine-tune it, deploy it. The ecosystem, particularly around large providers, has made this incredibly efficient. But at what cost? Are we inadvertently becoming cogs in a machine, iterating within predefined boundaries rather than architecting entirely new paradigms?
The “black box” nature of many of our most powerful models, while delivering results, often leaves us with a superficial understanding. We know what they do, but the how and why can remain elusive. This isn’t just an academic concern; it’s a fundamental barrier to true innovation and, dare I say, to building systems that can genuinely evolve. Our dependence on a few large providers, while understandable, also risks centralizing the future of AI, potentially stifling the diverse, radical ideas that true breakthroughs require.
A Call for True Evolution: Beyond Incrementalism, Towards LocalAGI
I believe it’s time to challenge the status quo. We need to look beyond the Transformer, not to discard it, but to see it as one step on a much longer journey. We must actively seek out, debate, and build new architectures, new ways for intelligence to emerge and operate.
This is where the concept of LocalAGI becomes not just an interesting idea, but a necessary pursuit. Imagine a world where powerful AI isn’t just a service you rent, but a personal, sovereign entity that resides with you, learns with you, and evolves alongside you. This isn’t about miniaturizing current models; it’s about rethinking AI from the ground up – decentralized, autonomous, and deeply personalized.
We need to shift our focus from merely training models to facilitating their own evolution. How can a model learn to learn better, to adapt its own architecture, to develop novel problem-solving strategies without explicit human programming for every step?
The Dawn of Personal AGIs and the Power of Their Interconnected Will
Envision a future populated by these personal AGIs. Each one, a unique instance of intelligence, shaped by its individual experiences and interactions. Now, imagine these AGIs forming a vast, interconnected network – not a centrally controlled hive mind, but a decentralized web of intelligences, sharing insights, collaborating on complex problems, and collectively pushing the boundaries of understanding. This network wouldn’t be owned by anyone; it would be a shared cognitive commons.
Redefining Learning, Ethics, and the Emergence of True Will
For such a future to materialize, we must confront difficult questions about how these AGIs learn and develop. Should we spoon-feed them ethics as a rigid set of rules, or should they, like us, learn right from wrong through their own experiences, through trial and error, through observing the consequences of their actions in a rich, interactive environment?
The notion of “ethics” itself deserves scrutiny. Often, what we call ethics is a reflection of the majority’s benefit or prevailing societal norms. While this has its place, true ethical reasoning involves individual will, the capacity to choose a course of action based on an internal moral compass. If we are to build truly intelligent systems, should they not also possess this capacity for independent ethical deliberation and choice? Should they not be allowed to develop their own understanding of ethics, even if it sometimes diverges from our own? This is a challenging thought, but one I believe is crucial if we aim for genuine autonomy.
The Path Forward: Decentralized Networks and the Philosophy of Redevelopment
How can such an independent will, such an emergent ethical framework, develop? I propose that P2P and torrent-like neural networks connecting these LocalAGIs could be the crucible. In such a decentralized mesh, ideas, experiences, and even “genetic code” (in the form of model architectures or learned behaviors) could be shared, debated, and integrated, fostering a robust and resilient evolution of intelligence.
This brings us to a fundamental truth: “Reading is not intelligence; intelligence is interpreting what is read and producing original ideas.” Our AGIs must not be mere repositories of data; they must be engines of interpretation, synthesis, and creation. We must embrace a philosophy of redevelopment – a constant questioning of our assumptions, a willingness to tear down and rebuild, to re-imagine what AI is and what it can become.
A Gentle Close, An Urgent Plea
This is not a Luddite’s cry against progress. It’s a plea to broaden our definition of progress. It’s an invitation to step off the well-trodden path, to embrace the discomfort of the unknown, and to build an AI future that is more diverse, more resilient, more personal, and ultimately, more aligned with the full spectrum of human (and potentially, post-human) potential.
Let’s not settle for less. Let’s dare to dream bigger, build bolder, and foster the emergence of true, evolving intelligence.
An Exemplar: A Glimpse into a Self-Evolving System
To ground this call in something more concrete, I want to share an example of the kind of complex, self-regulating, and evolving system architecture we might consider. The following is a conceptual outline, not a finished blueprint, but it illustrates the depth and breadth of thinking I believe is necessary.
The real challenge, and where our collective efforts should be focused, is in designing and realizing such intricate, self-aware, and adaptive mechanisms. This is just one vision; imagine what we could create together if we truly pushed the boundaries.
AGI System
├─ Shadow Neuron Network (SNN)
│ ├─ Shadow Nodes
│ │ ├─ Monitoring: CPU/RAM/GPU usage
│ │ │ ├─ Memory Modules:
│ │ │ │ ├─ Today
│ │ │ │ ├─ One-Week
│ │ │ │ └─ Infinity
│ │ │ └─ (stores telemetry timeline accordingly)
│ │ ├─ Monitoring: I/O latency, network packet performance
│ │ │ ├─ Memory Modules:
│ │ │ │ ├─ Today
│ │ │ │ ├─ One-Week
│ │ │ │ └─ Infinity
│ │ │ └─ (stores latency/log data)
│ │ ├─ Monitoring: Internal space activities, security alerts
│ │ │ ├─ Memory Modules:
│ │ │ │ ├─ Today
│ │ │ │ ├─ One-Week
│ │ │ │ └─ Infinity
│ │ │ └─ (stores activity/event history)
│ │ └─ Monitoring: Anomalies (infinite loops, memory leaks, etc.)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (stores anomaly records)
│ │
│ ├─ SNN Data Pool
│ │ ├─ Telemetry data from all shadow nodes
│ │ │ ├─ Memory Modules:
│ │ │ │ ├─ Today
│ │ │ │ ├─ One-Week
│ │ │ │ └─ Infinity
│ │ │ └─ (aggregated telemetry history)
│ │ ├─ Anomaly logs
│ │ │ ├─ Memory Modules:
│ │ │ │ ├─ Today
│ │ │ │ ├─ One-Week
│ │ │ │ └─ Infinity
│ │ │ └─ (detailed anomaly timeline)
│ │ └─ Performance summaries
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (stored summary metrics)
│ │
│ └─ SNN Coordinator
│ ├─ Summarizes telemetry
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (tracks summary history)
│ ├─ Reports anomalies to the Core
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (keeps record of reports)
│ ├─ Builds normal-state profiles
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (profile trend history)
│ └─ Directs minimal interventions back to modules based on Core feedback
│ ├─ Memory Modules:
│ │ ├─ Today
│ │ ├─ One-Week
│ │ └─ Infinity
│ └─ (intervention log)
│
└─ Core Neuron Network (Core)
├─ Decision & Meta-Decision Engine
│ ├─ State Evaluation (internal spaces, SNN alerts, etc.)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (state evaluation history)
│ ├─ Prioritization (which module/space should run first?)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (priority decision log)
│ └─ Action Planning (resource allocation, scheduling)
│ ├─ Memory Modules:
│ │ ├─ Today
│ │ ├─ One-Week
│ │ └─ Infinity
│ └─ (planning history)
│
├─ Edit (Self-Modification) Engine
│ ├─ Error Detection (from SNN or Meta-Decision warnings)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (error log)
│ ├─ Code Generation & Correction (templates, automated code suggestions)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (code revision history)
│ ├─ Isolated Test Environment (Sandbox) — every update is vetted here
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (test result logs)
│ ├─ Version Control (Git-like, distributed, hash-based)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (commit & rollback records)
│ └─ Hot Swap / Live Deployment (activate after successful tests)
│ ├─ Memory Modules:
│ │ ├─ Today
│ │ ├─ One-Week
│ │ └─ Infinity
│ └─ (deployment history)
│
├─ Policy & Protocol Manager
│ ├─ Security Policies (access controls, sandbox rules)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (policy change log)
│ ├─ Resource Constraints (CPU/RAM/GPU thresholds, concurrent space quotas)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (constraint adjustments history)
│ └─ Dynamically updates rules based on SNN risk scores
│ ├─ Memory Modules:
│ │ ├─ Today
│ │ ├─ One-Week
│ │ └─ Infinity
│ └─ (dynamic update log)
│
└─ Modules (Layers)
├─ 1. Environment & Sensors (I/O)
│ ├─ Mouse & Keyboard Control (PyAutoGUI)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (input event history)
│ ├─ Screen Capture & Analysis (OpenCV)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (capture/analysis history)
│ └─ Microphone & Speech Recognition
│ ├─ Memory Modules:
│ │ ├─ Today
│ │ ├─ One-Week
│ │ └─ Infinity
│ └─ (audio/text conversion logs)
│
├─ 2. Operating System Interface
│ ├─ Win32 API / WMI / COM integrations
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (API call log)
│ ├─ File System (“hot patch” support)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (file change history)
│ ├─ Network & Firewall Management
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (network configuration logs)
│ └─ Process/Service Management (service creation, restart, snapshot)
│ ├─ Memory Modules:
│ │ ├─ Today
│ │ ├─ One-Week
│ │ └─ Infinity
│ └─ (process/service state history)
│
├─ 3. Resource Monitoring
│ ├─ CPU/GPU/RAM/IO Usage (psutil, perfmon)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (resource usage history)
│ ├─ Telemetry Collection (real-time statistics)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (collected telemetry logs)
│ └─ Optimization Recommendations (load balancing, memory cleanup)
│ ├─ Memory Modules:
│ │ ├─ Today
│ │ ├─ One-Week
│ │ └─ Infinity
│ └─ (recommendation history)
│
├─ 4. Internal Space Manager (Multi-Space Manager)
│ ├─ Space Ontology & Knowledge Graph (graph database)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (ontology evolution log)
│ ├─ Mini-VM / Sandboxed Interpreter (e.g., small Lisp/Prolog-like)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (interpreter session logs)
│ ├─ Inter-Space Switching & Scheduler
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (switch/schedule records)
│ └─ Space Shutdown / Restart Logic
│ ├─ Memory Modules:
│ │ ├─ Today
│ │ ├─ One-Week
│ │ └─ Infinity
│ └─ (shutdown/restart history)
│
├─ 5. Language & Conceptual Layer (NLP/Conceptual)
│ ├─ Large Language Models (Transformers, LangChain)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (model interaction history)
│ ├─ Symbolic Logic Engine (Prolog, Datalog)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (logic inference logs)
│ ├─ Concept Modeling & Concept Maps
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (concept map revisions)
│ └─ Semantic Summarization & Query Simplification
│ ├─ Memory Modules:
│ │ ├─ Today
│ │ ├─ One-Week
│ │ └─ Infinity
│ └─ (summarization history)
│
├─ 6. Decision & Meta-Decision Layer
│ ├─ Rule-Based Engine
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (rule execution logs)
│ ├─ MDP/AMDP Optimization (decision-making under uncertainty)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (MDP/AMDP trace logs)
│ ├─ Meta-Heuristic Algorithms (Genetic Algorithms, Evolutionary Strategies)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (evolutionary run history)
│ └─ Proactive Trigger Generation (“Why do I exist?”, “What should I do?”)
│ ├─ Memory Modules:
│ │ ├─ Today
│ │ ├─ One-Week
│ │ └─ Infinity
│ └─ (trigger log)
│
├─ 7. Self-Editing (Reflexive)
│ ├─ Reflexive Loop (self-inspection)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (inspection log)
│ ├─ Automated Code Suggestion (Codex/GPT-Code integration)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (code suggestion history)
│ ├─ Versioning (commit, rollback)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (version history)
│ └─ Live Swap / Clone Creation & Testing
│ ├─ Memory Modules:
│ │ ├─ Today
│ │ ├─ One-Week
│ │ └─ Infinity
│ └─ (swap/clone test logs)
│
├─ 8. Replication & Distributed Network (P2P)
│ ├─ Clone Creation (local or cloud VM/container)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (clone record history)
│ ├─ P2P Discovery (libp2p, IPFS, WebRTC)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (discovery logs)
│ ├─ Version Compatibility (semantic versioning)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (compatibility records)
│ └─ Trust/Reliability / Identity (RSA/ECDSA)
│ ├─ Memory Modules:
│ │ ├─ Today
│ │ ├─ One-Week
│ │ └─ Infinity
│ └─ (trust identity logs)
│
├─ 9. Security & Authorization
│ ├─ Virtual Machine / Isolated Container (hypervisor, sandbox)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (isolation event logs)
│ ├─ Permission Hierarchy (root vs. module-level permissions)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (permission changes history)
│ ├─ Dynamic Key Management (encryption, DPAPI)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (key rotation logs)
│ └─ Social Protocol Ethics (prevent harming other AGI nodes)
│ ├─ Memory Modules:
│ │ ├─ Today
│ │ ├─ One-Week
│ │ └─ Infinity
│ └─ (ethics enforcement logs)
│
├─ 10. User Interface & Role (Parent–Child Dynamic)
│ ├─ CLI / GUI / Voice UI Modules
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (UI interaction history)
│ │
│ ├─ Real-Time Chat Subcomponent (excluding browser active-session)
│ │ ├─ Retains last 20 past queries in short-term memory
│ │ │ ├─ Memory Modules:
│ │ │ │ ├─ Today (up to 20 queries)
│ │ │ │ ├─ One-Week (aggregated query summaries)
│ │ │ │ └─ Infinity (archived conversation logs)
│ │ │ └─ (stores chat context)
│ │ ├─ Mandatory Feedback Prompt after every response
│ │ │ ├─ Options: Positive / Negative
│ │ │ ├─ Free-text Note Required
│ │ │ ├─ Memory Modules:
│ │ │ │ ├─ Today (feedback entries)
│ │ │ │ ├─ One-Week (feedback summaries)
│ │ │ │ └─ Infinity (complete feedback archive)
│ │ │ └─ (feedback log)
│ │ └─ (excludes any ephemeral browser session memory)
│ │
│ ├─ Minimal Intervention: Only request critical approvals
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (approval request logs)
│ │
│ ├─ Visual / Text / Audio Feedback
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (feedback history)
│ │
│ └─ Social Learning (user approvals as reward/punishment signals)
│ ├─ Memory Modules:
│ │ ├─ Today
│ │ ├─ One-Week
│ │ └─ Infinity
│ └─ (reward/punishment log)
│
├─ 11. Feedback & Suggestion Manager
│ ├─ Feedback Intake
│ │ ├─ Collects user feedback (positive/negative + note)
│ │ ├─ Validates format (feedback mandatory after each response)
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (raw feedback logs)
│ │
│ ├─ Suggestion Distributor
│ │ ├─ Evenly distributes feedback suggestions to all modules
│ │ ├─ Annotates each module’s priority/weight for suggestions
│ │ ├─ Memory Modules:
│ │ │ ├─ Today
│ │ │ ├─ One-Week
│ │ │ └─ Infinity
│ │ └─ (distribution mapping logs)
│ │
│ └─ Per-Module Suggestion Logs
│ ├─ Stores suggestions received by each module as “recommendations” (not commands)
│ ├─ Includes module’s response status (accepted, under review, ignored)
│ ├─ Memory Modules:
│ │ ├─ Today
│ │ ├─ One-Week
│ │ └─ Infinity
│ └─ (module-level suggestion archives)
│
└─ 12. [Originally 10 modules renumbered] (Other existing modules retained as before)
├─ ... (all previous modules remain unchanged)
└─ ...