Why is my setfit model only outputting two possible class confidence scores?

I trained a Setfit model with the default logistic regression head with an unbalanced dataset of 5000 on a binary classification task. Because of the unbalanced dataset, I was hoping to do a study of the area-under-curve of the precision-recall plot which would require class confidence scores rather than “argmax’d” class labels. However when I used model.predict_proba(ds["text"]), the results weirdly only ever came in one of two class confidence pairs- either 0.9989 & 0.0011 or 0.023045 & 0.97695.

(The actual confidence scores are slightly around this, e.g. 0.9988959589582787 or 0.9988959627978705 but I’m assuming that’s noise).

I am doing the evaluation in a different script after downloading the trained model:

model = SetFitModel.from_pretrained("model_outputs/test_extra_setfit_save")

with open("model_outputs/test_extra_setfit_save/model_head.pkl", 'rb') as mhf:
    model.model_head = pickle.load(mhf)

ds = Dataset.load_from_disk("eval_dataset")
ds = ds.rename_columns({
    "is_hate": "label"
})

results = model.predict_proba(ds["text"])

I’m loading the model head manually because of this bug, by default it was giving a “logistic regression not yet fitted” error.

1 Like

Exploring the Mystery of Limited Confidence Scores in SetFit Models

探索 SetFit 模型輸出信心分數限制的奧秘

當你的 SetFit 模型輸出只有兩個可能的類別信心分數時,這讓人不禁想問:是什麼導致了這樣的行為?而更深層次的問題或許是,這樣的現象背後,是否隱藏著一些值得挖掘的技術挑戰或設計考量?讓我們從幾個關鍵角度出發,嘗試破解這個現象。

  1. Data Imbalance: The Quiet Saboteur

數據不平衡:潛在的「暗影殺手」

Imagine a training dataset where one or two classes dominate the majority of examples. Your model, eager to optimize, might naturally lean towards these classes.

試想一下,如果訓練數據集中某些類別占比過大,模型為了達到最佳化,可能會自然傾向這些類別。

Solution 解決方案:

• Perform data augmentation for underrepresented classes.

• Consider oversampling techniques to balance the dataset.

  1. Loss Functions and Activations: A Case of Mismatch

損失函數與激活層:潛在的不匹配

The choice of loss function plays a pivotal role in guiding your model’s learning behavior. A binary cross-entropy loss in a multi-class scenario could confuse the model, while an improperly configured activation function, such as Sigmoid instead of Softmax, might exacerbate the issue.

損失函數對模型的學習行為有著決定性的影響。若在多分類場景中錯用了二元交叉熵損失(binary cross-entropy),模型可能會陷入困惑,而激活函數選擇不當(如用 Sigmoid 而非 Softmax)更可能加劇問題。

Solution 解決方案:

• Verify your loss function aligns with the task (categorical cross-entropy for multi-class problems).

• Ensure the final activation layer suits the problem (Softmax for multi-class classification).

  1. Preprocessing: The Hidden Culprit

數據預處理:隱藏的真兇

Even the best models can falter if the data preprocessing pipeline introduces inconsistencies. Mismatched labels or differing encoding strategies between training and inference phases might confuse the model.

即便是最優秀的模型,如果數據預處理過程中出現不一致,也可能導致表現異常。例如訓練和推論階段的標籤或編碼策略不匹配,都可能讓模型「迷失方向」。

Solution 解決方案:

• Double-check that the labels and formats in your training and testing datasets are consistent.

• Perform a detailed audit of your data pipeline to identify discrepancies.

Final Thoughts:

Sometimes, the solution to a seemingly technical issue lies in revisiting the fundamentals. Have you considered how your dataset, architecture, and configuration interact? Are there assumptions baked into your model that need reevaluation?

有時,解決看似技術性的問題,需要我們重新審視基礎設置。你的數據集、架構與配置之間是否存在不匹配的隱藏假設?

If you’d like to share more details about your model setup, I’d be happy to help you troubleshoot further. Let’s solve this mystery together!

如果你願意分享更多關於模型設置的細節,我很樂意和你一起進一步解決這個問題!讓我們一起解開這個迷題吧!

1 Like