Why loss printed by fit() differs from loss using custom loop for huggingface RoBERTa?

My code is as follows:

import tensorflow as tf
from transformers import RobertaConfig, TFRobertaMainLayer

# 1. Create a class to be able to use fit()

class Transformer(tf.keras.Model):
  def __init__(self):
    super(Transformer, self).__init__()

    config = RobertaConfig(
        vocab_size=100,
        hidden_size=128,
        intermediate_size=128, 
        max_position_embeddings=514,
        num_attention_heads=8,
        num_hidden_layers=6,
        type_vocab_size=1,
    )  
    self.encoder = TFRobertaMainLayer(config)

  def call(self, inp, training=False):
    return self.encoder(inp)[0]

model = Transformer()

# 2. Calculating loss manually for dummy input

loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
x = tf.constant([[1, 0]])
y_true = tf.constant([[1, 0]])
y_pred = model((x, x))
loss = loss_fn(y_true, y_pred)
print(loss) #                              printing 4.8093767

# 3. Run fit()

model.compile(loss=loss_fn)
model.fit((x, x), y_true) #                printing 4.7854

The losses are different:

tf.Tensor(4.8093767, shape=(), dtype=float32) 1/1
[==============================] - 0s 0s/step - loss: 4.7854