Why my finetuned model size so small and unable to load

I am new to pretrain.I use customed dataset,which is of alpaca format and it has about 60K rows and is of 19MB.
I finetuned with “meta-llama/Llama-2-7b-chat-hf” and the output directory is
du -sh *
4.0K adapter_config.json
26M adapter_model.safetensors
74M checkpoint-200
74M checkpoint-250
74M checkpoint-300
8.0K README.md
24K runs
After mergeing with original model the size is still small.
The finetune scripts is

import transformers
import textwrap
from transformers import LlamaTokenizer, LlamaForCausalLM
import os
import sys
from typing import List
 
from peft import (
    LoraConfig,
    get_peft_model,
    get_peft_model_state_dict,
    prepare_model_for_kbit_training ,
)
 
import fire
import torch
from datasets import load_dataset
import pandas as pd

data = load_dataset("json", data_files="/mnt/dataset/website/test.json")

data["train"]
BASE_MODEL = "meta-llama/Llama-2-7b-chat-hf" 

model = LlamaForCausalLM.from_pretrained(
    BASE_MODEL,
    load_in_8bit=True,
    torch_dtype=torch.float16,
    device_map="auto",
)
for param in model.parameters():
    # Check if parameter dtype is  Float (float32)
    if param.dtype == torch.float32:
        param.data = param.data.to(torch.float16)
 
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)
 
tokenizer.pad_token_id = (
    0  # unk. we want this to be different from the eos token
)
tokenizer.padding_side = "left"

def generate_prompt(data_point):
    return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.  # noqa: E501
### Instruction:
{data_point["instruction"]}
### Input:

### Response:
{data_point["output"]}"""
 
CUTOFF_LEN=2048

def tokenize(prompt, add_eos_token=True):
    result = tokenizer(
        prompt,
        truncation=True,
        max_length=CUTOFF_LEN,
        padding=False,
        return_tensors=None,
    )
    if (
        result["input_ids"][-1] != tokenizer.eos_token_id
        and len(result["input_ids"]) < CUTOFF_LEN
        and add_eos_token
    ):
        result["input_ids"].append(tokenizer.eos_token_id)
        result["attention_mask"].append(1)
 
    result["labels"] = result["input_ids"].copy()
 
    return result
 
def generate_and_tokenize_prompt(data_point):
    full_prompt = generate_prompt(data_point)
    tokenized_full_prompt = tokenize(full_prompt)
    return tokenized_full_prompt

train_val = data["train"].train_test_split(
    test_size=200, shuffle=True, seed=42
)
train_data = (
    train_val["train"].map(generate_and_tokenize_prompt)
)
val_data = (
    train_val["test"].map(generate_and_tokenize_prompt)
)

LORA_R = 8
LORA_ALPHA = 32
LORA_DROPOUT= 0.05
LORA_TARGET_MODULES = [
    "q_proj",
    "v_proj",
]
 
BATCH_SIZE = 128
MICRO_BATCH_SIZE = 8
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE
LEARNING_RATE = 3e-4
TRAIN_STEPS = 300
OUTPUT_DIR = "experiments-trr"

model = prepare_model_for_kbit_training(model)
config = LoraConfig(
    r=LORA_R,
    lora_alpha=LORA_ALPHA,
    target_modules=LORA_TARGET_MODULES,
    lora_dropout=LORA_DROPOUT,
    bias="none",
    task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
model.print_trainable_parameters()

training_arguments = transformers.TrainingArguments(
    per_device_train_batch_size=MICRO_BATCH_SIZE,
    gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
    warmup_steps=100,
    max_steps=TRAIN_STEPS,
    learning_rate=LEARNING_RATE,
    fp16 = not torch.cuda.is_bf16_supported(),
    bf16 = torch.cuda.is_bf16_supported(),
    logging_steps=10,
    optim="adamw_torch",
    evaluation_strategy="steps",
    save_strategy="steps",
    eval_steps=50,
    save_steps=50,
    output_dir=OUTPUT_DIR,
    save_total_limit=3,
    load_best_model_at_end=True,
    report_to="tensorboard"
)

data_collator = transformers.DataCollatorForSeq2Seq(
    tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
)

trainer = transformers.Trainer(
    model=model,
    train_dataset=train_data,
    eval_dataset=val_data,
    args=training_arguments,
    data_collator=data_collator
)
model.config.use_cache = False

 
with torch.autocast("cuda"): 
    trainer.train()
model.save_pretrained(OUTPUT_DIR)

and merge scripts is

from transformers import AutoModelForCausalLM
from peft import PeftModel
from transformers import AutoTokenizer
import torch

OUTPUT_DIR = "/mnt/codes/test/merged1"

base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
peft_model_id = "/mnt/dataset/website/blog_split_qa/experiments"
model = PeftModel.from_pretrained(base_model, peft_model_id)
model.merge_and_unload()



model.save_pretrained(OUTPUT_DIR)


Can anyone help